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Abstract

Software development and analysis tools (SDATs) typically contain complex models that are expensive to compute,

and whose expense grows significantly depending on the size of the software system under analysis. When these

models are not stored in a manner that allows them to be restored after program restart, that expense is not amortized;

re-computation results in undesirable downtime in the developer’s daily workflow. This thesis aims to find the most

suitable approach for storing and persisting the models of a specific change propagation tool, ModCP. Existing work to

study and identify optimal storage technology has been evaluated using datasets either that are randomly generated—

not simulating the nature of real world software—or that derive from excessively small software systems for which

recomputing would be feasible.

This thesis explores and implements potentially beneficial datastore technologies in ModCP and compares them

on subjective and objective measures against the baseline (time to fully re-building the models) and each other to

determine whether storage integration is feasible and significant reduction in the downtime can be achieved. The

cost of rebuilding the model of ModCP can be reduced by 13–46 times, for the datasets we tried, by using specific

serialization technology; in contrast, the use of database technologies involves high overhead for read/write queries

through database connectors, making them unsuitable as an option for improvement of performance in SDATs.



In loving memory of my dog, whom I lost on this journey. You will always be in my heart.

To my father, for constantly nurturing and supporting me.

To my mother, for her unconditional love and believing in me.



Acknowledgments

I would like to offer my deepest thanks to everyone who supported me during the completion of this thesis, especially

Rahila Afzal who has consistently motivated me and made it easier to finish this work. My greatest appreciation and

gratitude goes towards my supervisor and mentor, Dr. Robert Walker, who always knew what to say to whenever

I felt like I had hit a dead end and has the patience of a saint. I would also like to take this time to express my

gratitude towards my MSc defence examining committee members Dr. Reda Elhajj and Dr. Diwakar Krishnamurthy

for kindly agreeing to be on my examination board. I am most thankful to Ken Gnazdowsky and Mike Cooper from

Find it EZ Software for their assistance and guidance throughout this time. I also thank Hao Men for his assistance

during the beginning of my work. Lastly, a special thanks to my family for their guidance and support throughout this

experience.



Table of Contents

Abstract ii

Dedication iii

Acknowledgments iv

List of Figures viii

List of Tables ix

1 Introduction 1
1.1 The problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Previous approaches to the problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Our solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Thesis statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.5 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Motivation 9
2.1 Software Development and Analysis Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 The MVC architecture of ModCP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Motivating Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.1 Scenario 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.2 Scenario 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.3 Scenario 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Database Technology to Address the Problem 16
3.1 Database technology and its potential benefit in SDATs . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 Prior work on the performance and scalability of database technologies . . . . . . . . . . . . . . . . 23
3.3 Proposed approach to reduce the re-computation cost in SDATs . . . . . . . . . . . . . . . . . . . . . 29

3.3.1 Study I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3.2 Study II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4 Study I: Database Technologies in Isolation 32
4.1 Performance measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2 Experimental dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2.1 Mathematical preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2.2 Generated graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.3 Setup for evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.3.1 Graph creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.3.2 Database technologies used in the experiment . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.3.3 Defining schema for MySQL and PostgreSQL . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.3.4 Use cases realized via database technologies . . . . . . . . . . . . . . . . . . . . . . . . . . 39



TABLE OF CONTENTS

4.3.5 Time measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.3.6 System information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.4 Results and analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.4.1 Objective evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.4.2 Subjective evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.5.1 Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.5.2 Deleting the graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.5.3 Other datastore technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.5.4 Threats to validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5 Study II: Integrating Database Technologies in ModCP 67
5.1 Performance measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.2 Experimental dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.3 Setup for evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.3.1 ModCP and the database setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.3.2 Use case de�nitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.3.3 Time measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.3.4 Time measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.4 Results and analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.4.1 Objective evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.4.2 Subjective evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.5.1 Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.5.2 Alternative approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6 Object Serialization to Address the Problem 79
6.1 Object serialization and its potential bene�t in SDATs . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.2 Serialization approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.2.1 Types of serializer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.2.2 Serializer compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.2.3 Serialization format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.2.4 Object serialization technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.3 Prior work on performance and scalability of serialization . . . . . . . . . . . . . . . . . . . . . . . . 87
6.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

7 Study III: Object Serialization Technologies in ModCP 95
7.1 Performance measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
7.2 Setup for evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

7.2.1 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
7.2.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
7.2.3 Use cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
7.2.4 Time and space measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

7.3 Results and analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
7.3.1 Objective evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
7.3.2 Subjective evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

7.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
7.4.1 Updating the model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
7.4.2 Other object serialization technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

vi



TABLE OF CONTENTS

7.4.3 Threats to validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
7.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
7.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

8 Study IV: Optimizing DataContract Serializer in ModCP 114
8.1 Interdependencies between the submodels of ModCP . . . . . . . . . . . . . . . . . . . . . . . . . . 115
8.2 Performance measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
8.3 Setup for evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

8.3.1 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
8.3.2 ModCP model speci�cs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
8.3.3 ModCP model processing time (Baseline) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
8.3.4 Different serialization approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
8.3.5 Use cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
8.3.6 Time and space measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

8.4 Results and analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
8.4.1 Approach 1 evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
8.4.2 Approach 2 evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
8.4.3 Approach 3 evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

8.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
8.5.1 Threats to validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

8.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
8.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

9 Discussion 127
9.1 Deliberation of studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
9.2 Impact of research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
9.3 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

10 Conclusion 133

Bibliography 136

vii



List of Figures

2.1 Model–View–Controller architecture of ModCP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Implementation of ModCP and its working in the game applications of ABC Corporation. . . . . . . 13

3.1 MySQL architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2 PostgreSQL architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3 High-level architecture of Neo4j. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4 High-level structure of ModCP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.5 The idea of using ModCP via retrieved models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.1 Examples of graphs with varying density. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.2 Comparison of edge count versus computation time for UC I-1. . . . . . . . . . . . . . . . . . . . . . 48
4.3 Comparison of edge count versus computation time for UC I-2. . . . . . . . . . . . . . . . . . . . . . 49
4.4 Comparison of edge count versus computation time for UC I-3. . . . . . . . . . . . . . . . . . . . . . 51
4.5 Comparison of edge count versus computation time for UC I-4. . . . . . . . . . . . . . . . . . . . . . 52
4.6 Comparison of edge count versus computation time for UC I-5. . . . . . . . . . . . . . . . . . . . . . 54
4.7 Comparison of edge count versus computation time for UC I-6. . . . . . . . . . . . . . . . . . . . . . 55
4.8 Comparison of edge count versus computation time for UC I-7. . . . . . . . . . . . . . . . . . . . . . 56
4.9 Comparison of edge count versus computation time for UC I-8. . . . . . . . . . . . . . . . . . . . . . 58

5.1 Connecting ModCP to the database server. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

7.1 The process of storing the ModCP model using serialization technology. . . . . . . . . . . . . . . . . 98
7.2 The process of loading the ModCP model back using serialization technology. . . . . . . . . . . . . . 98

8.1 Graph store operation process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

9.1 Scalability of cost reduction for ModCP in using DataContract. . . . . . . . . . . . . . . . . . . . . . 130



List of Tables

4.1 Utilized scale-free graphs generated via the Barabási—Albert model. . . . . . . . . . . . . . . . . . . 35
4.2 Overview of use cases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.3 Time taken to process the use cases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.4 Computation time to perform UC I-1 per graph relative to data storage technology. . . . . . . . . . . 48
4.5 Computation time to perform UC I-2 per graph relative to data storage technology. . . . . . . . . . . 49
4.6 Computation time to perform UC I-3 per graph relative to data storage technology. . . . . . . . . . . 51
4.7 Computation time to perform UC I-4 per graph relative to data storage technology. . . . . . . . . . . 52
4.8 Computation time to perform UC I-5 per graph relative to data storage technology. . . . . . . . . . . 54
4.9 Computation time to perform UC I-6 per graph relative to data storage technology. . . . . . . . . . . 55
4.10 Computation time to perform UC I-7 per graph relative to data storage technology. . . . . . . . . . . 56
4.11 Computation time to perform UC I-8 per graph relative to data storage technology. . . . . . . . . . . 58
4.12 Space requirements (in bytes) for database technologies, relative toG9. . . . . . . . . . . . . . . . . 61

5.1 Information on dataset used as input project in ModCP to evaluate in the study. . . . . . . . . . . . . 69
5.2 Execution times for the use cases, in seconds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.3 The interim wait time to rebuild the ModCP model for the sample datasets. . . . . . . . . . . . . . . 73
5.4 Summary of performance (in seconds) of the integrated database technologies as compared to the

baseline for ModCP without database support. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.1 Summary of the object serialization technologies we studied. . . . . . . . . . . . . . . . . . . . . . . 93

7.1 Serialization time (in milliseconds) for the candidate serializers on different datasets. . . . . . . . . . 107
7.2 Size of the serialized object (in MB) generated by the candidate serializers. . . . . . . . . . . . . . . 108
7.3 Deserialization time (in milliseconds) of the candidate serializers. . . . . . . . . . . . . . . . . . . . 108
7.4 Combined time required (in milliseconds) to serialize and to deserialize the ModCP models, for various

datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

8.1 Inherent dataset metrics and ModCP model metrics. . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
8.2 Detailed information on the build times of the submodels of ModCP, in milliseconds. . . . . . . . . . 118
8.3 Approach 1, UC IV-1: The time taken to serialize the submodels individually, in milliseconds. . . . . 121
8.4 Approach 1, UC IV-2: The time taken to deserialize the submodels and reconstruct the full model, in

milliseconds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
8.5 Approach 1: The space on disk required to save the submodels, in bytes. . . . . . . . . . . . . . . . . 121
8.6 Approach 2, UC IV-1: The time taken to serialize the syntactic model, in milliseconds. . . . . . . . . 121
8.7 Approach 2, UC IV-2: The time taken to deserialize the syntactic model and rebuild the semantic

model, in milliseconds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
8.8 Approach 2: The space required to store the syntactic model, in bytes. . . . . . . . . . . . . . . . . . 122
8.9 Approach 3, UC IV-1: The time taken for serialization, in milliseconds. . . . . . . . . . . . . . . . . 123
8.10 Approach 3, UC IV-2: The time taken to deserialize the submodels and rebuild the complete model, in

milliseconds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
8.11 Approach 3: The space required to store the submodels, in bytes. . . . . . . . . . . . . . . . . . . . . 123
8.12 The time required to complete the rebuild, or deserialization plus rebuild, for the �ve approaches, in

milliseconds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
8.13 The time required to serialize the models (or submodels), in milliseconds. . . . . . . . . . . . . . . . 124
8.14 The space required to store the models (or submodels), in bytes. . . . . . . . . . . . . . . . . . . . . 124



LIST OF TABLES

9.1 The rebuild cost reduction achieved in ModCP using DataContract object serialization technology. . . 129

x



Chapter 1

Introduction

1.1 The problem

Real-world software systems are large; they are developed and evolved over time with chang-

ing business and technical environments by changing groups of people [Davis et al., 1988]. These

changes can involve adding or removing functionality, stability improvements, security �xes, com-

patibility �xes, bug �xes, and improvements to the user experience, all of which are realized by

modi�cation, deletion, and addition to the existing software code base [Lehman et al., 1997]. While

in principle a developer can make all needed changes with nothing more sophisticated than a text

editor, this would place an excessive burden on them, forcing them to focus on character-level

problems rather than on big-picture issues, and resulting in decreased productivity and increased

error-proneness [Horwitz, 1990; Riddle and Fairley, 2012]. Instead, developers make use of semi-

automated software development and analysis tools (SDATs) to analyze potential changes, to make

changes, and to catch errors [Fenton and Neil, 2000; Johnson et al., 2013].

Software developers continually receive feedback from production and operations teams at fre-

quent stages requesting improvements in the software code base which typically involves bug �xes,

addressing security and stability issues, and performance issues. Companies like Amazon and

Net�ix undergo maintenance and deployment thousands of times per day [Hussain et al., 2017].

Software development and maintenance is achieved using continuous integration and continuous
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deployment(CI/CD) strategy which involves careful inspection of the new changes being intro-

duced [Agarwal et al., 2018].The developers use SDATs to analyze the requested improvements

and to identify the potentially affected areas of the proposed changes.

Most SDATs build atop one or more models of the software, such as abstract syntax trees,

which are syntactic models, or type hierarchy graphs, which are semantic models [Seidewitz,

2003; Neamtiu et al., 2005]. These models can be built statically or dynamically and function

on either a coarse- or �ne-level of granularity. Static approaches involve analyzing and examin-

ing the source code without executing the code, to compute the model for all possible executions

[Nagappan and Ball, 2005; Emanuelsson and Nilsson, 2008; Schwartzbach, 2008]. In contrast,

dynamic approaches rely on information collected during program execution to perform analysis

over the exercised parts of the system [Dai et al., 2009; Kolbitsch et al., 2009; Anderson et al.,

2011]. There are certain times when even a combination of both are required [Khazan et al.,

2005; McCorkendale et al., 2014]. Thus, the cost of computing the model differs and depends

upon the characteristics of the analysis applied. Similarly, there is a cost difference based on the

granularity level of the analysis: �ne-grained analysis approaches require more time as compared

to coarse-grained approaches because of the additional detail that they require to model; coarse-

grained approaches can generally eliminate the need for intricate and precise models but at the cost

of reduced accuracy [Debray et al., 1990].

The space and time costs of building software analysis models not only depend upon the level

of depth of analysis and the nature of the approach applied, but also on the software being ana-

lyzed. This means that the larger and more complex the software, the more costly it is to build the

model [Dyer, 2013]. Therefore, building an SDAT model for a large software system is immoder-

ately expensive, and even optimized versions of SDATs can require long building times and large

amounts of memory. For each build of the model, there will be an interim wait time between when

the software is ready for analysis and when the software has been analyzed. This is an undesirable

downtime in developers' daily development activities and is always likely to increase exorbitantly

as software systems grow in size and complexity.

2
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However, often, the same piece of software needs to be analyzed anew by the same or dif-

ferent developers because its models are no longer present in memory. Some scenarios where

re-computation is required include the following.

1. When the software analysis tool is used to analyze more than one component of one or more

software systems, the previous model of the analysis is lost from memory. This requires the

tool to rebuild the model again every time instead of updating.

2. Tools can crash due to faults, requiring rebuilding of the model.

3. When the system is shut down at the end of the work shift of the developer, the SDATs are

also stopped and their models must be rebuilt the next time.

4. Even if the tool is not shut down, the system cleans its memory periodically and the computed

model is lost; thus, there is a need to rebuild again.

While rebuilding may be straightforward and a minor inconvenience for small systems, that is not

the case for large and critical ones. Traditional rebuild mechanisms simply recompute the model

in its entirety, which is as costly as building it from scratch. The rebuild cost can be amortized if

there is some means of storing all or part of the models out of volatile core memory and restoring

them to core memory when needed again, assuming that the cost of rebuilding would be greater

than the cost of storing and retrieving the models. The validity of this assumption and the degree of

the savings involved will depend on (a) the details of the analysis model, (b) the size of the analysis

model, and (c) the mechanism of storing and retrieving the models to/from external memory. Fur-

thermore, while deployment is performed on high-end computing facilities, software development

and maintenance operations are usually performed using desktop computers or laptops [Hannay

et al., 2009; Agarwal et al., 2018].

3
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1.2 Previous approaches to the problem

Memoization is a theoretical optimization technique where the results of functions are stored in a

cache of some sort and retrieved when the same computation is repeated [Michie, 1968]. Of�ine

memoization is the process of storing the computed results in a datastore, and reusing them in

future executions to save the computation cost. Examples of datastores include:

1. �at �les , e.g., simple text �les; semi-structured �les such as comma-separated value (CSV)

�les [Shafranovich, 2005] or character-delimited �les; JavaScript Object Notation (JSON)

�les [Crockford, 2006];

2. relational databases, where the data is stored in a tabular structure of rows and columns

calledrelations[Codd, 1989]; relational database management systems (RDBMSs) such as

MySQL, IBM DB2, and PostgreSQL are used to store and maintain the database, utilizing

the standardized high level language known as Structured Query Language (SQL) for all

interactions;

3. non-relational databasesallow the storage, retrieval and maintenance of the data without

a tabular structure and SQL language; thus, they are now commonly known as NoSQL

databases [Han et al., 2011] (Redis1 and MongoDB2 are examples);

4. graph databasesare also NoSQL databases where the data is modelled and stored as graphs,

and the maintenance of such databases allows �exibility in the schema [Angles and Gutier-

rez, 2008]; Neo4j is a graph database management system which uses the Cypher query

language3;

5. Cloud storageallows the storage of �les and data at a remote location, which could be ac-

cessed via the internet or a private network connection. Google Cloud datastore is a NoSQL

database which allows the user to syndicate the data on cloud by SQL-like queries.4

1Redis Support,https://redis.io/topics/introduction [2021/06/29]
2MongoDB Support.https://docs.mongodb.com [2021/06/29]
3Neo4j Support.https://neo4j.com/docs/ [2021/06/29]
4Google Cloud Datastore.https://cloud.google.com/datastore [2021/06/29]

4
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Objectserializationis technique that enables the conversion of the in-memory representation

of a structured object into a platform-independent stream of bytes [Waldo, 1998; Philippsen et al.,

2000]. This stream can be written to a �le for storage or transmitted over a network for commu-

nication purposes. The reverse action of reconstructing the same object back using the stream of

bytes in the same or different environment is calleddeserialization.

Prior work on such storage mechanisms provides us little evidence to leverage in deciding the

best approach for serialization and deserialization in a concrete system. We can summarize the

issues with such work as follows.

1. The dataset to evaluate and compare relational database and graph database is randomly gen-

erated which does not accurately represent the nature of real world software.

2. The comparison of storage mechanism libraries has been performed on small software sys-

tems. Small software systems in our context do not need any storage mechanism since re-

building a model for them is already feasible. The research results must scale up to industrial

applications for them to be useful [McDermid and Bennett, 1999].

3. Few studies implement and integrate storage mechanisms on a tool/application to compare the

performance, rather than providing just a generic descriptive case study of the storage mech-

anism. While this helps to understand the performance better, the data to be stored/retrieved

in these study is not large enough to inform our scenario.

4. Database libraries have been compared, however, their performance along with data access

technology has not been taken into account. When software is integrated with a database, its

performance to store and access the information also adds to the overall execution cost.

5. There is a lack of guidelines about how to make context-speci�c decisions about what ap-

proach to use. For example, in a real scenario, we need to consider interaction with a garbage

collector, process priority, and the presence of other loads on the machine. Without such

considerations, the validity of the data in such experiments is of questionable generality.

So the results tell us little as to which of the possible storage mechanisms would be best to use

5
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in a speci�c context, nor what preliminary evaluation to perform to restrict the large range of

possibilities.

1.3 Our solution

We start by performing a case study which aims to identify the most suitable of�ine storage tech-

nology which could aid SDATs in minimizing the long interim time to rebuild the model. To reduce

the scope of this issue to a more manageable level, we consider the problem of change propagation.

Change propagation is a technique used to re-establish consistency to a system after a change has

been made within the source code [Han, 1997]. Our study was conducted in the following three

phases:

Phase I. We generated Barabasi–Albert graphs, which are random, scale-free, and follow the

preferential attachment model [Farkas et al., 2001]. These graphs were used to investigate the

growth behaviour as well as scalability of dependence graphs used for change propagation. De-

pendency graphs, which lie at the core of the change propagation model, are a representation of

data- or control-�ow between the entities of a software program. We store these simulated graphs

in a relational database and graph database and performed the relevant change propagation activi-

ties which includes adding and deleting a node or edge and updating an existing dependency.

Phase II. In this phase of our study, we use ModCP [Men, 2018], as a concrete implementation

to represent change propagation tools, on six open source real world software systems of different

sizes and complexity as the software to be analyzed. The baseline con�guration considers the

extant version of ModCP in which no memoization takes place. For comparison, PostgreSQL and

Neo4j are used as the underlying database technologies for memoization. However, the rebuild

performance does not improve and in fact, worsens drastically as compared to the baseline.

6
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Phase III. Finally, we conduct a study on four object serialization technologies, to capture and

store data derived from 111 classes and 311 �elds and properties in four different storage formats,

which later can be used to reload the model when a rebuild would otherwise be required. The

goal is to evaluate these serialization technologies in terms of: (a) speed, (b) schema evolution

support, (c) introduction effort and maintainability, (d) documentation, (e) benign learning curve,

and (f) platform- and language-framework independence.

1.4 Thesis statement

The thesis of this dissertation is that, in general, the cost of storing and reloading the models of

ModCP can be much lower than rebuilding them, and that, speci�cally, the use of data-contract

serialization obtains the best speed-up of the available options, with a twenty-fold decrease in the

relative time required.

1.5 Thesis outline

The rest of this thesis is organized as follows: Chapter 2 contains motivational examples to illus-

trate the need for research into faster rebuilding and analysis in existing SDATs. In Chapter 3,

we present potentially bene�cial data storage technologies for SDATs, discuss our approach to

reduce the computation cost and prior work on the performance and scalability of the discussed

technologies. We evaluate these data storage technologies in the two subsequent chapters. Chap-

ter 4 is a comparative study of select candidate database technologies to store and maintain the

analysis graphs in a real-world software system. In Chapter 5, we discuss the advantages of adding

database technology support to SDATs. In Chapter 6, we discuss and describe the favourable im-

plementation of object serialization techniques in SDATs and explore the about past research on

the performance and scalability of the serialization technologies. We evaluate these object seri-

alization techniques in two chapters, where Chapter 7 is a comparative evaluation of the selected

candidate object serialization techniques in ModCP and Chapter 8 is a focused evaluation of the

7
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selected object serialization technique from Study-3. In Chapter 9, we discuss the implications of

our work and the threats to validity. Chapter 10 concludes the thesis.

8



Chapter 2

Motivation

This chapter provides a brief background on what software development and analysis tools are and

why they are used by software developers. Then, we discuss the change propagation tool ModCP,

which we use in our study as a representative of such tools. We demonstrate ModCP in the layout

of the Model–View–Controller (MVC) architectural style and discuss scenarios where the current

process of rebuilding models from scratch becomes more than an inconvenience in developers'

daily development activities.

2.1 Software Development and Analysis Tools

Software development and analysis tools (SDATs) are used by software developers to create, mod-

ify, and maintain a program. Any software, once developed, still goes through a series of mainte-

nance activities which may arise either due to issues raised by end-users, or due to the changing

needs of the organization itself. Software maintenance is de�ned as modi�cations made after de-

ployment. Software maintenance is considered as the most costly phase of a software lifecycle,

requiring 70–85% of the total cost.

Just like much other software, SDATs interact with software developers through a view called a

user interface. This view can consist of a graphical user interface (GUI), command line interface, or

application program interface (API). The software developer interacts with the view and the view is
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responsible to propagate their requests to the control logic of the software. The controller examines

the nature of the request and performs the operation required to ful�ll it by using information stored

in the core model. The controller is also responsible to initiate any modi�cations to the model itself.

In our work, we use ModCP to represent SDATs to identify and address the problem of long

interim time involved in unnecessary re-computation.

ModCP [Men, 2018] is a change propagation prototype tool built in collaboration between the

Laboratory for Software Modi�cation Research and its industrial partner, Find it EZ Software Cor-

poration. The tool functions on coarse- and �ne-grained analyses to perform change propagation

in any Java program at the statement level. Change propagation is an activity of identifying the

impact of a change introduced in a program. It is used to perform risk/cost analysis and to ensure

consistency of work�ow in the program.

2.2 The MVC architecture of ModCP

The underlying model of ModCP comprises data from three types of graphs: (1) a class hierarchy

graph (CHG), (2) an enhanced call graph (ECG), and (3) a set of modularized program dependence

graphs (mPDGs). The CHG provides the inheritance information between classes and interfaces;

each node in the CHG represents a class or an interface and an edge exists between two nodes

when one is derived from another. The ECG represents the call chain of methods obtained from

the source code being analyzed; it is also global in nature and relies on the resolution of method

calls to their de�nition in order to be built and updated when a change is made. The CHG and

the ECG provide information for coarse-grained analysis and the building of mPDGs relies on

these graphs. An mPDG is built for every method within the source code, providing data and

control dependence between the statements within a method through two sub-graphs: (1) the data

dependence graph and (2) the control dependence graph.

The prototype tool ModCP has a simple GUI which allows the user to upload a Java project

or a single-�le Java program. It offers a code editor window along with a tree view of project

directory. When the user selects the seed for where the change needs to be propagated, the results

10
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Figure 2.1: Model–View–Controller architecture of ModCP.

are displayed as interactive graphs in a viewer tab. A code editor can be used once a decision is

made to move forward with desired/required changes. Following this, the user can save the newly

changed code and the model is updated.

Figure 2.1 gives an illustration of the architecture of ModCP. The software developer uploads

the project code for analysis using the “Upload/Build” view. The view forwards the code �le to

the controller, which is responsible to build the model. The source code �les are uploaded and a

lexer generates a parse tree which is used by a parser to build an abstract syntax tree (AST) for the

given code. The AST is used to build the graphs that make up the model. Once the model is built,

the view is changed and the user can either perform change propagation or make changes using the

“Code Editor” view. The “Change Propagation” view requires the developer to select a statement

where a change is suggested, the level of granularity at which the analysis is required (coarse or

�ne), a seed node (which can be a local variable or a �eld), and a distance for analysis depth.

Once the user provides these parameters to perform change propagation, the view sends the

user request to the “Slice” controller where the ModCP's slice algorithm is performed. The slice

11
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algorithm retrieves the model data which is stored in the volatile memory of the system. At last, the

results are passed to the “View Relationship” view, where potentially impacted nodes and edges are

visualized as an interactive graph. The user can navigate these graphs, increasing or decreasing the

depth, to better understand the cost and risk involved in the maintenance activity. Once the course

of action is �nalized, the changes can be implemented using a “Code Editor” view. The modi�ed

source code �les are noti�ed to the “Update” controller by the view, which is responsible to update

the model data accordingly. Since mPDGs are modular in nature, they are updated ef�ciently as

only the affected ones are changed. The rest of the graphs are updated based on the affected set

gathered by the viewer. The CHG is updated �rst since the ECG depends on it. The CHG is

updated in the following sequence: the nodes of the deleted classes are removed �rst; the nodes

of renamed classes are replaced with new name labels; if the parent for a class is changed, the

outgoing edges are updated accordingly; a new node is created for every new class added. The

ECG update process is intricate but basically follows the same pattern as the CHG update.

Since all the graphs are built when the source code is loaded into the tool and slicing is done on

demand, this approach makes it faster to update the model when some change is made; however,

every time the tool is shut down the user must wait again (for more than half an hour for larger

input projects) for the graphs to be built before proceeding to propagate a change. Therefore,

even though the slicing and updating of the graphs is faster than other approaches as suggested by

their evaluation results Men [2018], the tool requires storage support so that the wait time may be

decreased. The goal is to only build the model once, and then if the tool is shut down, the model

may be restored from the storage and changes can be made to the source code without waiting.

2.3 Motivating Example

To understand the existing drawbacks and need for memoization in SDATs, let us consider a sce-

nario, illustrated in Figure 2.2, where ModCP is being used as an SDAT to assist the software

engineers at ABC Corporation in maintenance work. ABC Corporation is a game development

company which currently offers three famous Android games: X, Y, and Z. Due to the compet-

12
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itive and ever changing gaming world, the developers at ABC Corporation perform a biweekly

in-app update which includes weekly missions and challenges for the game users. Apart from the

biweekly in-app updates, the game version becomes obsolete in every three months for the users.

Every three months, the season theme and rewards are changed for the game and the users who

are using the older version cannot play together with other players using the newer version. The

reason behind this is that the newer version has different nodes and events which are incompatible

with the older version.

ModCP is used by the developers to assist them in assessing the proposed change and identify-

ing the potentially impacted code blocks/statements when adding/removing/modifying an existing

functionality. Just like every other workplace, the developers at ABC Corporation are not perma-

nent employees of the company and they tend to change over time. So the new developers have

little to no clue about the existing code base and they mostly rely on ModCP to examine the po-

tential regions which may require their attention to modify the code blocks. The biweekly changes

Figure 2.2: Implementation of ModCP and its working in the game applications of ABC Corpo-
ration.

13
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introduced in the games are minor, but a good quality control job is very crucial part of this job.

A minor bug can crash the whole game which might require urgent �xes and re-downloading of

the new version, which clashes with the whole idea of in-app update. The biweekly in-app update,

therefore, goes through rigorous testing in a brief time frame and thus is costly when compared to

the of�ine update.

2.3.1 Scenario 1.

John Doe, a new developer at ABC Corporation, uses ModCP to seek assistance in performing

maintenance work on the game X.

John is responsible to address the bug reports and analytic reports provided by the managers

and end users, in the upcoming biweekly in-app update. John starts his work shift by starting to

work on game X. He uploads the source code of the game into ModCP for change propagation

assistance. ModCP, as X's source code is uploaded, builds the analysis model. During this stage,

John cannot do much since ModCP is in the loading stage. It took approximately 30 minutes until

John could actually make use of the tool's features, like locate potential impacted regions and cost

analysis. John continued his work for the rest of his shift. The next day, John repeats the same

process and waits for another thirty minutes out of his productive work.

Now, that John gets accustomed to the new workplace, he tries to maximize his output by

performing the loading process before leaving for a break. But, John still �nds this whole repetitive

process inconveniently slow. When the workload is high (and time is of the essence), and ModCP

is on the model building stage, John often proceeds without the cost and risk analysis, sometimes

introducing even worse bugs that require even longer to diagnose and repair than if he had worked

in the standard way.

2.3.2 Scenario 2.

John Doe adds new functionality in game Y and modi�es existing functionality in game Z, using

ModCP.

14
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John, just like other employees of the company, has to frequently work on more than one game

to keep up with the schedule. In such instances, John has to load the codebases of games Y and Z

simultaneously several times a day to complete the work. In these kind of scenarios, John tends to

lose more than hour of his shift and has to even work past his shift hours.

2.3.3 Scenario 3.

John Doe returns to work after the weekend to resume maintenance work on game X.

John, over his time at the new workplace, found a work around for evading the loading phase

interim time by not signing off at the end of the shift and by just locking his system. But, when the

system remains idle for too long, the memory refreshes on its own periodically and thus loses the

model which was loaded in ModCP on the volatile memory. Another reason that the model gets

lost even when the system is not signed off is in the event of automatic updates that occur overnight

as per company policy.

2.4 Summary

In this chapter, we de�ned and discussed various software development and analysis tools. We

selected ModCP, a change propagation tool, as an implementation of such tools for our study.

We described ModCP using the Model–View–Controller architectural style and brie�y talked

about its working. We provided an example to point out various scenarios where unnecessary

re-computation is performed in ModCP. We concluded that the building of analysis models for

large real software systems can occupy signi�cant time during which further work on these sys-

tems would be highly risky. This is an inconvenience for software developers and even after trying

any workarounds, it still remains an issue. The interim time gets worse when working on mul-

tiple projects at the same time as the process of building has to be repeated since it is stored in

volatile memory. ModCP requires a storage support where the model data could be easily stored

and retrieved by the controller, thus avoiding the re-computation in the scenarios described here.

15



Chapter 3

Database Technology to Address the

Problem

In this chapter, we consider and compare various available database technologies for possible in-

tegration in SDATs to decrease the re-computation cost of the model. We consider and explore

the two major datastore types—relational databases and non-relational databases; we discuss our

attempts at understanding the data to be stored and its growth behaviour in the database. We also

explain the process used to integrate the technology implementation (like PostgreSQL, MySQL)

in ModCP to identify which database technology could be integrated to maximize ef�ciency in

rebuilding the model,

3.1 Database technology and its potential bene�t in SDATs

During the maintenance phase, the re-computation cost of the same piece of software anew is rather

expensive as it comes with an undesirably-long interim wait time between when the software is

changed and when the software has been analyzed. These long wait times could be reduced if

they are stored in a data-store and loaded in the memory when needed, rather than re-computing

the model from scratch. Relational databases and non-relational databases are two such data-

store technologies that could be integrated in SDATs to store the model(s). Relational database
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management systems (RDBMSs) are based on the relational model in which data is managed in

a structured manner using relations (tables) and these relations may possess relationships among

themselves. RDBMSs use structured query language (SQL), a programming language which is

used to communicate and handle structured data, consisting of two major components: the data

de�nition language, to de�ne/create the database, schema, users, etc.; and the data manipulation

language, to insert, modify, and delete the data. Non-relational databases, also widely known

as NoSQL databases, are used to store data which is not modelled as tables. Unlike relational

databases where SQL is used to manage the database, there is no standard programming language

to handle non-relational databases.

The never ending debate about which database technology is better has led to several studies in

the research community where both types of database technologies were implemented on different

scales using a range of database technology representations; the results are not straightforward.

The mixed �ndings indicate that the decision to choose between them should be based on the

needs of the client. The relational database keeps the data very well organized; however, the rigid

schema is also a major limitation. Non-relational databases, as the name states, allow �exible

schema and scalability in managing huge volume of data. With the increase in the size of data

and its complexity in the relational databases, the query write-up and its processing time gets

high too, whereas NoSQL offers simpler and easy querying of database. However, the absence

of standardization of a query language in NoSQL results in a long integration time due to a steep

learning and training curve.

The model of ModCP is lost when the tool is closed or another software is analyzed. The model,

as discussed in Chapter 2, could be stored in a datastore and reloaded when rebuilding of the model

would otherwise be required. We consider both types of database technologies to identify the best

suitable storage platform for ModCP.

1. MySQL. MySQL is one of the most used, open source, traditional relational databases that

is considered reliable due to high availability and around the clock up-time. It provides un-

interrupted access by enabling instant fail-over through a wide variety of cluster servers and
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Figure 3.1: MySQL architecture.

master-slave replication con�gurations. Any high-speed processing system can use MySQL

as it is designed to process millions of queries and thousands of transactions while ensuring

rich functionalities, with great technical support and maintenance.

The MySQL database software is a client/server system that consists of a multi-threaded

SQL server that supports different back ends, many different client programs and libraries,

administrative tools, and several application programming interfaces (APIs). An embedded

multi-threaded library is also available that can be linked into an application to get a lighter

and faster standalone product. MySQL has a pluggable storage engine architecture, shown in
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Figure 3.1, which allows the selection of a specialized storage engine for a particular appli-

cation need while encapsulating speci�c application coding requirements in case application

changes require changes in the underlying storage engine. The application programmer and

the database administrator interact with the MySQL database through Connector APIs and

service layers atop the Storage Engine. The top layer, Layer 1, in MySQL Server, shown as

dotted rectangle, shows the services that MySQL provides for client/server networks includ-

ing connection handling, authentication, and security. Layer 2, which is the processing center

of MySQL, includes query analysis, optimization, caching, and other functions available in

MySQL. The third layer consists of pluggable storage engines and the last layer is the �les

system where physical storage of the data is kept.

2. PostgreSQL. PostgreSQL is another open source RDBMS which is developed, updated,

maintained, and �xed by a devoted group of volunteer developers around the world. Post-

greSQL, similar to MySQL, uses a client/server model, as shown in Figure 3.2, supporting

the standard SQL as the querying language. PostgreSQL is an object-relational programming

language (ORDBMS), where as MySQL is a pure RDBMS [Douglas, 2003]. It serves as a

bridge between object-oriented programming and relational/procedural programming. This

translates to supporting complex data structures by allowing the developers to de�ne objects

and table inheritance. An ORDBMS is especially useful when dealing with data that is not

compatible with a strictly relational model. PostgreSQL can perform complicated read/write

operations, while using data that requires validation. It supports NoSQL and a large variety of

data types including JSON, hstore, and XML. Original data types can be de�ned and custom

functions can also be set up as well.

PostgreSQL is designed for extra-large database management making it an attractive choice

for our use cases. Figure 3.2 shows the different components of its architecture. A server

process calledpostgres, shown in stacked oval shape, manages the database �les, accepts con-

nections to the database from client applications, and handles the client requests. On the other

hand, client applications can be a text-oriented tool, a graphical application, a web server, or
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Figure 3.2: PostgreSQL architecture.

a specialized database maintenance tool. The physical structure of PostgreSQL consists of

the following components: (1) shared memory, (2) background processes, and (3) data di-

rectory structure/data �les. Write-Ahead Logging (WAL), a mechanism for ensuring data

integrity, refers to the concept where the changes to database tables are only processed once

those changes have been logged [Shaik and Vallarapu, 2018]. WAL buffers temporarily store

changes to the database, work memory is used by internal sort operations and hash tables, and

maintenance work memory is used by maintenance operations like vacuum, create and alter

table, and add foreign key operations. The background writer handles the job of writing to

disk speci�c dirty buffers, whereas the job of the checkpointer process is to write the change
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to the data �le.

3. Neo4j. Relational databases depend on rigid schema and do not make it easy to add new

relationships between objects. Implementing such problems in relational databases involves

high cost due to a large number of join operations which can expensive. This led to the birth

of non-relational databases, or NoSQL (the NoSQL name was coined because they do not use

the SQL language) “Not Only SQL” databases as a response to web data. NoSQL databases

do not tend to have a standard language. They offer a means to store and extract unstructured

data quickly which is managed for different types of analyses.

NoSQL databases can generally store data in four ways:

• Key–value store: a data storage system designed for storage, retrieval, and management

of“associative arrays” (e.g., DynamoDB, Redis, Voldemort) [Kepner et al., 2016].

• Wide-column store: uses tables, rows, and columns, to store data but unlike RDBMS,

names and formats of the columns can cross rows within the same table (e.g., Cassandra,

HBase) [Sharma and Dave, 2012].

• Documents store: designed for storage, retrieval, and management of semi-structured

data (e.g., MongoDB, CouchDB, DynamoDB) [Guimaraes et al., 2015].

• Graph store: stores a collection of relationships in the form of nodes and edges (e.g.,

Neo4j, In�niteGraph) [Miller, 2013].

Graph databases, a type of NoSQL, are databases that store data in the form of a graph and that

are optimized in analyzing relationships between data rather than the data itself. The graph

consists of nodes and edges, where nodes act as the objects and edges act as the relationship

between the objects. Nodes and edges have properties that depict their speci�c attributes.

In Neo4j, “relationships are �rst-class citizens of the graph data model”, unlike relational

databases1. Graph databases were designed to work with huge datasets. It makes use of

index-free adjacency consisting of a direct pointer to the adjacent node. This makes graph
1Factors Driving the Graph Database Explosion.https://www.datanami.com/2016/08/19/5-factors-driving-graph-database-

explosion/ [2021/06/29],https://neo4j.com/news/5-factors-driving-graph-database-explosion/ [2021/06/29]
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Figure 3.3: High-level architecture of Neo4j.

databases perfect for search queries as these can traverse ef�ciently and fast. Some of the best

known graph databases are: Infogrid, HypergraphDB, Jena, DEx, FlockdB, and Neo4j. Out

of these only Neo4j is discussed in the remaining part of this section.

Neo4j is graph database system software written in Java and using the Cypher query language.

Neo4j stores various parts of the graph structure in a set of �les known asstore �les. Stored

�les are generally categorized by their record type; therefore, separate �les exist for nodes,

relationships, properties, labels, etc. Neo4j can be deployed on multiple systems. It comprises

two parts: (1) a client that sends commands to the server and (2) a server that processes the

commands and responds with the results to the client.

Each layer of the high-level architecture of Neo4j (shown in Figure 3.3)—from the Cypher

query language to the �les on disk—is meant for storing graph data in the most optimal way.

The two APIs, traversal and core, provide support for accessing the graphs; object and �le

caching allows for improved performance; and transaction management makes this database

fully ACID compliant. Record �les store various aspects of the graph structure whereas the

transaction logs record all write operations in the database.
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The model of ModCP is an instance of a class which is stored in memory and the underlying

data are the �eld and its value pair. The size and complexity of the model object is therefore

based on the nature of the software being analyzed. The model of ModCP can also be perceived as

graphs. Class Hierarchy Graphs, Enhanced Call Graphs, and mPDGs: these three graphs constitute

the ModCP's model. Based on these two ways of perceiving the model of ModCP, both RDBMS

and graph database could be used as an implementation of data store technology.

To identify the most suitable data store technology, we conduct a study on relational and non-

relational data-store to store, retrieve and maintain the model of SDAT. By doing so, we target to

understand the nature of ModCP model data and how well the database technologies scale with the

increase in the size and complexity of software being analyzed.

3.2 Prior work on the performance and scalability of database

technologies

In this section we review some of the major work in this area. The focus remained the identi�ca-

tion of a database technology that could be implemented for our use-case. Existing relevant work

ranged from comparison of different kinds of database technologies for generic datasets or for spe-

ci�c purposes. The goals of these works varied, therefore: while Vicknair et al. [2010] focused on

�nding the differences between a traditional relational database and NoSQL databases, or Fiora-

vanti et al. [2016] wanted to �nd way to model the transition from a relational to a non-relational

database. Moniruzzaman and Hossain [2013] claims to help users in understanding the merits and

demerits of NoSQL databases to support applications processing huge volumes of data. However,

the author considers the volume of data as a factor to choose NoSQL database approaches and does

not take scalability into consideration. Also, the comparison is based on the characteristics of dif-

ferent NoSQL databases (key–value, document based, wide-column) rather than storing datasets

of distinct size and complexity, which does not aid us in our selection scenario. This work focuses

on evaluation based on attributes of the database technologies such as design, integrity, indexing,
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and distribution; no real studies are performed to test their performance. Another factor that they

considered is the popularity for these technologies in the job market which may indicate where the

demand lies but does not necessarily help in deciding which technology we can use for different

requirements.

Vicknair et al. [2010] acknowledged the increase in emergence of NoSQL databases and per-

formed a comparative study to understand the differences. The author(s) chose MySQL as to

represent relational databases because it is open source yet commercially recognized and Neo4j

to represent graph databases which is fairly new. They researched and recognized some speci�c

areas where they believe using non traditional NoSQL databases might come up as an improved

alternative. Besides comparing the space and time taken by both different database type platforms,

they also compared them on aspects like customer support in terms of documentation and ease

of use. They created datasets of different size to address scalability. Two types of datasets were

created: character database and integer database. Both of these datasets had a range of available

size from 1,000 to 1,000,000 nodes. The space required to store these datasets on the databases and

time taken to run a set of queries was recorded. The results demonstrated that Neo4j performed

better than MySQL in structural queries. The idea to store graphs in relational as well as graph

databases was taken because of the nature of data and information around us exhibits graph pat-

terns. Social media networks, customer and commodity interaction, and even dependence between

software modules in software development and analysis tools are graphs. However, the major set-

back of this study is that the datasets were generated with random values. Real world graphs are

not random and they exhibit power law distributions, being scale-free. Another difference from our

requirement is that the data was stored in the database directly and then compared. In our use case,

the database is supposed to be integrated with a software or tool. In this scenario, not only does

database technology have a cost, but also the cost of data access technology which is responsible

for the communication between the application and database is also to be included.

Batra and Tyagi [2012] also compared relational and graph database technologies: MySQL and

Neo4j. The evaluation parameters of their study included level of support/maturity, �exibility, and
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security. MySQL was queried using PHP and Neo4j was queried using the Cypher query language.

Three prede�ned queries were used for the evaluation and the time taken to execute these queries

was recorded. Their results show that the retrieval time for MySQL increases drastically based

on the number of objects retrieved whereas only a slow increase in time taken is seen for Neo4j.

One of the �aws in this study is that only data retrieval is considered as a factor for evaluation;

addition/deletion of nodes in graph databases or any other operation is not considered. In addition,

simple example objects with simple relationships have been used for evaluation which do not

represent real-world systems where more complex relationships exist and require a more thorough

evaluation.

With sensitivity to the characteristics of the dataset in mind, Fioravanti et al. [2016] performed

an evaluation of MySQL+Hibernate, Neo4j, and MongoDB. Their work centres around changing

of the storage schema from a relational + ORM persistence stack to a NoSQL solution. They

describe their approach of modelling a re�ection-based architecture over Neo4j and MongoDB.

Neo4j is a graph-oriented database while MongoDB is document-oriented. For their test data, they

use two different kinds of data-sets: (1) a real dataset obtained from 13,000 clinical examinations,

which includes 243+110+99 �elds, organized in a graph with a depth (i.e., the maximum distance

from the root node) of 8, and (2) a synthetic dataset which contains generated examinations or-

ganized in a full binary tree structure in which the depth ranges from 2 to 8 and contains 100

examinations per depth. Only the read operation has been considered in this study which leaves

room for further evaluations. The time taken for the read-only operations for a single examination

by each implementation is recorded which includes retrieval of the examination. Their results indi-

cate that both NoSQL implementations show improvement in performance metrics. Neo4j reduced

the retrieval time by approximately 1.5 times, and MongoDB reduces it by more than 33 times.

They also state that their implementation of NoSQL technologies shows a better scalability and

�exibility with Neo4j requiring less engineering investment than MongoDB for the data model

conversion; however, the MongoDB implementation shows better performance. The conclusion

made in this study rely solely on one operation and requires further investigation for the scalability
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of graph database vs relational databases.

An in-depth survey by Angles and Gutierrez [2008] went into great detail for describing the

various graph database models and how they differed from the most in�uential database models

at the time. They provided historical data which provides a very broad analysis of literature on

the graph data models and query languages graph. Later, Angles [2012] performed a comparative

study of available graph databases. Their measures of comparison were general features for storing

and querying data as well as database modeling features such as data operation and manipulation,

query languages, and integrity constraints. Based on the level of maturity of the database manage-

ment system they study two types of technologies: graph databases and graph stores. The graph

databases that they selected were AllegroGraph, DEX, HypergraphDB, In�niteGraph, Neo4j, and

Sones. They also compared graph store technologies including Filament, G-Store, Redis graph,

and VertexDB. The database languages under consideration were the Data De�nition Language,

the Data Manipulation Language, and the Query Language. In addition, the graph data structures

that they considered were simple graphs, hypergraphs, nested graphs, and attributed graphs. The

results of this study reveal that none of the technologies studied support nested graphs while Sones

supports the most number of properties for data structures (i.e. types of graphs, edge, and nodes).

HypergraphDB supports the most number of data storing features whereas AllegroGraph and Sones

support the most number of operation and manipulation features. DEX and In�niteGraph support

the most number of representations for representing entities, properties and relations at both in-

stance and schema levels. In terms of support for querying mechanisms, AllegroGraph provides

the most number of options with either full or partial support for all options considered. While

this work provides important insight into the features of various graph database technologies, it

is lacking a lot of context regarding how these technologies would perform and scale based on

the size and complexity of the database. The basis of comparison was just the features of these

technologies; however, our major goal aims for better performance. Given how they do not con-

sider physical and implementation considerations, this work cannot be used to determine which

technology may best suit a given use case, but may be used as a starting point in order to explore
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graph databases.

Since different databases technologies have different strengths, the question that Rautmare and

Bhalerao [2016] looked for an answer to was whether NoSQL databases would perform better

in multiple scenarios than a SQL database for a small scale internet-of-things application. The

two databases that they compared were MySQL and MongoDB. To conduct their experiment they

designed the hardware of a water sprinkler system by using the readings captured from a soil mois-

ture sensor and other sensors. The readings were then stored in MySQL version 5.5 by creating a

new schema and, for MongoDB, Mongo Booster 1.6.2 client was used to create the collection and

documents. The study involved using varying numbers of threads and records and while the num-

ber of threads was varied from 1 to 10, the number of records varied between 1,000 and 10,000.

The read process was carried out by using a SELECT query to fetch 1,000 records from 10,000

records in the database. With a varying number of threads, their results show a similar response

time for SELECT query operation for both MySQL and MongoDB till the number of threads goes

up to 4. However, at 10 threads, they saw an increase in the response time of MongoDB as com-

pared to MySQL. For the INSERT operation with varying number of threads, MongoDB was faster

as the number of threads increases. The SELECT query operation for varying number of records

showed an increasing trend line of the response time for MongoDB whereas it sightly decreased for

MySQL, on the other hand, for the INSERT query with varying number of records: a steady line

of MySQL response time can be observed. On the other hand, rapid variations in MongoDB are

observed. Their results show that in some scenarios, MongoDB required less response time com-

pared to MySQL whereas MySQL responses were more stable throughout the study. As is clear,

their study only considers a small scale project with the only measure of performance being the re-

sponse time. Similar to Rautmare and Bhalerao [2016], Gy�orödi et al. [2015] also used MongoDB

and MySQL to do the comparison of a NoSQL and a SQL database. A user-forum-discussion

dataset was created on MySQL and MongoDB with 10k instances and 7 attributes. Basic create,

read, update and delete (CRUD) operations were used to record performance. Their results show

that 10,000 users were inserted into MySQL in 440 seconds, while in MongoDB, the time was just
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0.29 seconds. Similarly for read, update, and delete operations, MongoDB appeared to be perform

better than MySQL. The problem lies in the fact that they did not address scalability in their study,

neither were any other subjective measures like security, maturity, and �exibility considered in the

evaluation. The dataset in the study is nowhere near the size and complexity of real world data.

A similar study for comparing RDBMS and NoSQL databases was conducted by Hammes

et al. [2014]. They looked at structured and unstructured data and implemented the data models in

two databases: MongoDB and PostgreSQL. They used two Linux cloud servers by Amazon Web

Services and loaded each with the same data. The evaluation process included running a script to

perform Create, Read, Update, and Destroy operations in addition to recording the execution times

for bulk read/write operations. The datasets that they performed the study on were banking data and

online blog data, as the structured data and unstructured data respectively. Their results indicate

that for highly structured data PostgreSQL performed signi�cantly better in terms of execution

time due to join features whereas stored functions were required for MongoDB. Moreover, for

unstructured data, the time taken was 1,061 milliseconds for PostgreSQL vs. 4,784 milliseconds for

MongoDB for one of the queries. MongoDB's clear advantage is the ease of use as the queries can

be built into scripts. Considering the overall performance, including the bulk read/write operations

where PostgreSQL performed signi�cantly better with the increase in the number of operations,

their results indicate that PostgreSQL is the better option for both structured and unstructured data

in terms of execution time even though the decision to choose one over the other is still dependent

on the client preferences. Their results in�uenced our decision to consider PostgreSQL as one of

the options. The cons of their study include the lack of varying sizes and complexity in the datasets

as well as the types of queries performed.

Petri [2005] also carried out a comprehensive comparative study of MySQL with another

RDBM by the name of Oracle9i. The study sheds a light on the functionalities being offered by

the each of these technologies and provides insight into the features of each technology along with

their limitations. However, performance comparison was not performed and the scope of this study

lies within the boundaries of feature comparison due to the author concluding that such compari-
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son is not plausible based on the difference in their functionalities and capabilities (MySQL does

not provide clustering whereas Oracle9i does). The author points to the performance benchmarks

provided by the websites of these technologies. The paper does help in identifying whether the

implementation within the database technology is possible or not and offers information regarding

the features that might be needed; however, it still leaves the reader to do the job of identifying

the better performer on their own. The study is limited to the relational database technologies and

does not consider any NoSQL database technologies to serve as a fair comparison for our work.

3.3 Proposed approach to reduce the re-computation cost in

SDATs

As stated earlier, we use ModCP to represent the SDATs in our work. We apply the approaches to

minimize the re-build time of its model to demonstrate and discuss the possibilities. Below in this

section, we discuss these approaches and the studies based on them to familiarize the readers with

upcoming chapters.

3.3.1 Study I

In the �rst phase (Chapter 4), we arti�cially generated datasets simulating the SDAT model, stored

these with candidate database technologies, and managed them. We de�ne and implement the use

cases to identify potentially ideal database technology to store and manage the model data in the

most cost ef�cient manner and reduce the re-building cost of model in SDAT.

3.3.2 Study II

In the second phase (Chapter 5), we implemented and integrated the most suitable database tech-

nology of each type, relational and non-relational, identi�ed from Study I (Section 4) into the

change propagation tool ModCP.
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Figure 3.4: High-level structure of ModCP.

The computed model of ModCP can be encoded and stored on a database technology using a

data access technology. The implementation design is described in Figure 3.4. The end user up-

loads the software codebase for which the analysis is required into the ModCP. The input codebase

is parsed and its model is computed by generating the CHG, ECG, and mPDGs for the software.

These graphs are then encoded and stored on the database technology by using the .NET database

connector library. The computed model which is present in the memory is used to load the view of

the ModCP tool, so the user can perform the required analysis. However, when the model data is

not present in memory, the model is re-computed by retrieving the data stored in the database tech-

nology. Figure 3.5 demonstrates how ModCP can leverage the model data stored on the database

and recompute it without actually parsing the codebase. ModCP establishes a connection with the

database technology by the means of ADO.NET and database library which contains the necessary

procedures to run the database management queries using .NET. Once the model data is retrieved

from the database, the model object is re-instated by feeding the values to the attributes. This re-
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trieving and feeding process from the database enables the ModCP tool's view to be used again by

the end user similarly as if the model was rebuilt in the traditional way, that is parsing and building

from scratch.

Figure 3.5: The idea of using ModCP via retrieved models.

3.4 Summary

In this chapter, we provided the introductory information about certain database technologies, the

mechanisms behind their operation, and how they are considered bene�cial to use as the storage

mechanisms in SDATs. We also overviewed the two studies conducted to evaluate these technolo-

gies.
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Chapter 4

Study I: Database Technologies in Isolation

In this chapter, we compare the database technologies we have identi�ed as pertinent for their

potential to reduce re-computation costs in SDATs. The past work in this area is insuf�cient to

determine an optimal datastore: they lack real-world sized datasets, they only consider quantita-

tive aspects, and they do not address many factors that would play a critical role when database

technology is integrated with SDATs/software. We consider relational datastores (MySQL, Post-

greSQL), semi-structured datastores (Python-CSV), and non-relational datastores (Neo4j) in our

study as the candidate database technologies. We de�ne a set of use cases that would be pertinent

to SDATs and evaluate the performance of the database technologies in conducting these use cases

for graphs of varying sizes. The purpose of this study is to address the following research question:

RQ1: How do different database technologies perform in comparison to one another

in executing store, delete, and change operations over analysis graphs in a real-world

software system?

We �nd that Neo4j, a non-relational database, and PostgreSQL, a relational database, show

the most promise for inexpensive, scalable datastore technology in realizing our use cases. It is

important to emphasize that this study does not consider the costs of reading and writing data

between the in-memory representation of the datastores and the SDAT; considering the additional

costs incurred at that stage, as mediated by the relevant database connector technology, will be the
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subject of Study II in the subsequent chapter.

We describe the measures of performance that we utilize in Section 4.1. Section 4.2 describes

the graphs that we generate as the experimental data for this study. The study setup is explained in

Section 4.3. We present the results and our analysis thereof in Section 4.4. Remaining points for

discussion, relative to this chapter, are given in Section 4.5. Section 4.6 presents our conclusions

in response to the research question.

4.1 Performance measures

We utilize objective and subjective measures to evaluate in this study. Objective measures include

the complexity of the model graphs (number of nodes and of edges), the time taken to process a

query, and the space required to store the model data on the candidate database technology. The

subjective measures include the dif�culty of installation of a database technology, maturity level,

ease of use, and the maintenance required; the subjective measures were obtained from the of�cial

documentation, open source discussions, and the published literature.

4.2 Experimental dataset

4.2.1 Mathematical preliminaries

A graph Gis a pair(V;E), whereV is a set ofvertices(also known asnodes) andE is a set of

edges, such thatE � V � V and8e 2 E;e = ( vi ;v j ) ) vi 6= v j ; we concern ourselves with only

undirected graphs in this study, without self-loops, and where any pair of nodes possess at most

one edge between them. For convenience, we de�nen = jVj andm = jEj relative to whichever

graph is under consideration in the given context.

An edgee= ( vi ;v j ) is said to beadjacentto vi and tov j ; the set of edges adjacent to vertexv is

the set of all edgese2 E;e= ( vi ;v j ) such thatv = vi or v = v j ; thedegreeof vertexv—represented

as deg(v)—is the cardinality of the set of edges adjacent to it. The minimum degree of a graph
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G—represented as degmin(G)—is the smallest degree of all vertices inV; the maximum degree

of a graphG—represented as degmax(G)—is the largest degree of all vertices inV. The average

degree of a graphG is given by

deg(G) =
1
n

n

å
i= 1

deg(vi): (4.1)

The maximum number of edges in a graphG is given by

mmax(G) =
n(n� 1)

2
: (4.2)

The densityd of a graphG is given by

d(G) =
m

mmax
: (4.3)

4.2.2 Generated graphs

We generated a total of nine graphsG1–G9, as detailed in Table 4.1. These are scale-free graphs,

generated via the Barabási—Albert model [Barabási and Albert, 1999] following the linear pref-

erential attachment rule—also known as “the rich become richer”; the implementation used to

generate them (in Python) is shown in Listing 4.1 utilizing thenetworxlibrary that supports such

generation [Wan et al., 2017]. This model represents a random dynamic graph grown from a small

“seed” graph by an inde�nitely repeated addition of a new vertex withm edges. The free ends of

the edges of each vertex are preferentially connected to vertices that are already rich in connec-

tions. The probabilitypi of connecting an edge with the vertexvi is proportional to the local degree

of connectivityki of vi [Hagberg et al., 2008; Schult and Swart, 2008]:

pi =
ki

å n
j= 1k j

: (4.4)

As per Diestel [2017],sparsegraphs are those whose number of edges is about linear in their

vertices. Similarly,densegraphs are those in which the number of edges is close to the maximal

number of edges [Black, 1998]. Figure 4.1 shows the visualization of sparse, “semi-dense” (i.e.,
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Table 4.1: Utilized scale-free graphs generated via the Barabási—Albert model.

2% Density 10% Density 25% Density

G1 G2 G3 G4 G5 G6 G7 G8 G9

n 100 1,000 10,000 100 1,000 10,000 100 1,000 10,000
m 99 9,900 999,799 475 49,296 4,992,271 1,204 124,684 12,496,704
mmax(G) 4,950 499,500 49,995,000 4,950 499,500 49,995,000 4,950 499,500 49,995,000
d(G) 0.020 0.020 0.020 0.096 0.099 0.099 0.243 0.250 0.250
degmin(G) 1 10 101 3 52 527 14 146 1,464
degmax(G) 14 156 1,651 42 391 3,706 64 621 6,120
deg(G) 1.98 19.80 199.96 9.50 98.59 998.45 24.08 249.36 2,499.34
nodes.csv 291 3,891 48,891 291 3,891 48,891 291 3,891 48,891
edges.csv 634 82,465 10,330,489 3,119 420,815 52,603,962 8,209 1,096,976 134,950,863

intermediate), and dense graphs. As shown in Table 4.1, the column groups2% Density, 10%

Density, and25% Densityrepresent the three categories we used based on the density of the graph.

The columnsG1 throughG9 refer to the individually generated graphs, whereG1 to G3 fall under

2% density,G4 to G6 fall under 10% density, andG7 to G9 fall under 25% density. The rowsn and

m provide the number of nodes and edges in the graphs, respectively;mmax(G) is the maximum

number of edges that could be present in this graph;d(G) provides the actual density of the graph

to three decimal points (this can vary from the exact target density of the category because of

randomness in the generation algorithm); degmin(G) is the minimum node degree in the graph;

degmax(G) is the maximum node degree in the graph; anddeg(G) provides the average of all the

nodes' degree in the graph. The rowsnodes.csvandedges.csvspecify the size of the �les recording

the graphs, in bytes. One common characteristic among the nine graphs is that none of them is

a complete graph, which closely represents real-world scale-free graphs exhibiting a “long tail”

(strong left-skew in the degree histogram).

Graphs can be represented and stored either as an adjacency list or an adjacency matrix. An

Listing 4.1: Script to generate graphs.
1 import networkx as nx
2 n = 100 # Number of nodes
3 m = 4 # Number of initial links
4 seed = 100
5 G = nx.barabasi_albert_graph(n, m, seed)
6 print (nx.info(G))
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(a) sparse graph (b) semi-dense graph (c) dense graph

Figure 4.1: Examples of graphs with varying density.

adjacency list is a list where each list element represents a node; each element itself contains a list

of the indices of the target node for each out edge. An adjacency matrix is a two-dimensional array

where rows represent the source node and columns represent the target node. The cell at rowi and

column j contains the value 1 if the edge(vi ;v j ) is present in the graph; otherwise it is 0. In our

study, we settled on using adjacency lists to represent our model data graphs, because:

• They are a compact option with a space complexity ofO(n) when compared to adjacency

matrices which have a space complexity ofO(n2) [Kleinberg, 2014].

• The savings in space increases dramatically if the dataset is sparse.

• Some database technologies have a limit on the number of columns that can exist in a table

or relation, e.g., 1,024 columns per table for Microsoft SQL Server1 and 4096 for MySQL.2

• The adjacency matrix permits random access (time complexity inO(1)), whereas the adja-

cency list requires a linear search (time complexity inO(n)) [Lafore, 2003].

4.3 Setup for evaluation

In this section, we explain in detail the setup for our evaluation, including the use cases analyzed

and the database technologies used.
1https://docs.microsoft.com/en-us/sql/sql-server/maximum-capacity-specifications-for-sql-server [2021/06/29]
2https://dev.mysql.com/doc/refman/8.0/en/column-count-limit.html [2021/06/29]
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4.3.1 Graph creation

In our experiment, we simulate the creation of the models for a SDAT by preparing a scale-free

graph using the Barabási–Albert model. The creation of the benchmark model datasets and the

underlying graphs is done by using thenetworkxlibrary in Python. Listing 4.1 shows a code

snippet which generates a basic scale-free graph for 100 nodes and~400 edges, wheren is the

number of nodes,m is the number of initial links (i.e., the number of edges to attach from a new

node to existing nodes), andseedis an indicator of random number generation state (we used the

same value for the sake of reproducibility). Line 5 is where the functionbarabasi_albert_graph() is

called which returns a graphG. Once all the graphs were generated they were then stored in two

�les: nodes.csvandedges.csv(not shown).

4.3.2 Database technologies used in the experiment

In our experiment, we supported semi-structured databases by using thenetworkxlibrary3 in

Python 3.6.2 and comma-separated value (CSV) �les. For relational database technology, we used

MySQL Workbench (Version 8.0.22, Community Edition) and pgAdmin4 (v5.3) as a development

platform for PostgreSQL which is a well known advanced object relational database technology

that supports CASCADE. For non-relational database technology, we used Neo4j (v4.2) which is

a graph database platform. The rest of this section describes the setup of the database technologies

used.

4.3.2.1 Python-CSV

Thenetworkxlibrary has been used to create arti�cial datasets and thecsvlibrary is used to main-

tain the datasets with the changes implemented. We iterated a set of statements to implement the

use-case and restored the dataset again back to the initial state within the loop. The execution time

was captured for only those statements which were responsible to implement the use-case.
3Networkx.https://networkx.github.io [2021/06/29]
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4.3.2.2 MySQL Workbench

To import our database, we used theload data infile method which reads from text �les at

a very fast speed. For the dataset containing nodes, we set the node id as the primary key to

avoid duplicate entries of the same node again. The datasets were stored locally on the system and

“ � secure� �le � private ” option was disabled during the experiment to provide access to documents

from the whole �le system. MySQL workbench uses SQL language to de�ne and manipulate data.

4.3.2.3 Neo4j

For small datasets, the direct import function available on the user interface of Neo4j can be used

to import data into the database. For medium sized datasets, up to import to the database. For

huge datasets, batch import command is used. Since our datasets fall in the range of medium-

sized datasets, we used theload csvmethod to import the arti�cial datasets into the system. We

chose to commit periodically after every 10,000 entries in order to avoid memory over�ow. For

optimization, we increased the page cache size and kept the maximum memory heap size to �fty

percent of the total RAM minus the heap size. We constructed the dependency graph in a similar

manner as the social media friendship graph, since both graphs exhibit long tail behavior. We

utilized the node name as an index in the database to aid fast search. We also opted for “merge”

rather than “create” to avoid redundancy in the node list. Neo4j uses the Cypher query language to

de�ne and manipulate graph and data.

4.3.2.4 pgAdmin 4

We set the node id as the primary key and the connection's source and target ids as foreign keys.

We also made use of the update cascade and delete cascade methods in the edges table in order

to automate a few processes such as renaming a node in the node; subsequently, the database

would alter the entries in the edges database without manual intervention. This has also helped us

to prevent adding new connections for the nodes that did not exist. To import the dataset to the

database, we used the copy method.
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4.3.3 De�ning schema for MySQL and PostgreSQL

Listing 4.2 shows the setup required for the relational database technologies before we store the

data in it. The commandcreate tablewas used to create the tablenodes, whereid is the primary key.

Similarly, we createdto and from columns for the tableedges, referencing the primary key of the

nodestable. Lastly, we usedcreate indexto add indices on theto andfrom columns of tableedges.

Listing 4.2: De�ning schema and creating tables in PostgreSQL and MySQL.
1 create table nodes(
2 id INTEGER PRIMARY KEY
3 );
4

5 CREATE TABLE edges(
6 a INTEGER NOT NULL references nodes(id)
7 ON update cascade on delete cascade,
8 b INTEGER NOT NULL references nodes(id)
9 ON update cascade on delete cascade,

10 PRIMARY KEY (a,b)
11 );
12

13 create index a_idx on edges(a);
14 create index b_idx on edges(b);

4.3.4 Use cases realized via database technologies

Table 4.2 gives an overview of all the use cases implemented in this study. TheOperationscolumn

describes the type of database operation being analyzed; these can be considered to be the standard

“CRUD” operations which are further divided into sub-operations as shown in columnUC# where

Table 4.2: Overview of use cases.

Operations UC# Description

Create a graph UC I-1 Create or store a graph

Retrieve a graph UC I-2 Read/access a graph

Update a graph UC I-3 Create a node with no edges
UC I-4 Create an edge between existing nodes
UC I-5 Rename a node
UC I-6 Change source and target nodes of an edge

Delete a graph UC I-7 Delete a node and its corresponding edges
UC I-8 Delete a speci�c edge
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the �rst two operations are single use-case each, the third operation is comprised of four use cases,

and the last operation consists of two use cases. There is a brief description in theDescription

column. These use cases are described in greater detail, below.

UC I-1: Create or store a graph. We used SQL to store the graphs in MySQL and PostgreSQL,

and used Cypher to store them in Neo4j (they were already in the appropriate format for Python-

CSV, so no explicit store operation was needed). We implemented all the use cases using Python to

represent semi structured database creation and manipulation. For relational database technology,

Listing 4.3: Creating tables to store the graphs in PostgreSQL.
1 CREATE TABLE nodes (
2 id INTEGER PRIMARY KEY ,
3 nameVARCHAR (10) NOT NULL
4 );
5

6 CREATE TABLE edges (
7 a INTEGER NOT NULL REFERENCES nodes(id)
8 ON UPDATE CASCADE ON DELETE CASCADE ,
9 b INTEGER NOT NULL REFERENCES nodes(id)

10 ON UPDATE CASCADE ON DELETE CASCADE ,
11 PRIMARY KEY (a, b)
12 );
13

14 CREATE INDEX a_idx ON edges (a);
15 CREATE INDEX b_idx ON edges (b);

Listing 4.4: UC I-1: Loading graphs into PostgreSQL.
1 COPY edges (a, b)
2 FROM '/Applications/friendship.csv' DELIMITER ',' CSV header;

Listing 4.5: UC I-1: Loading graphs into MySQL.
1 load data in�le "/Applications/edges_100.csv"
2 into table edges �elds terminatedby ',' lines
3 terminatedby '\n' IGNORE 1 LINES;

Listing 4.6: UC I-1: Loading graphs into Neo4j.
1 LOAD CSV WITH HEADERSFROM '�le:///people.csv' AS line WITH line
2 CREATE (:Person {id:line.id, name:line.name})
3 CREATE INDEX ON :Person(name);
4 USING PERIODICCOMMIT
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Listing 4.7: UC I-2: Reading the graph data from Python-CSV.
1 with open('nodes.csv', 'r', newline='')as csv�le:
2 node_data = csv.reader(csv�le, delimiter='\n', quotechar='|', quoting=csv.QUOTE_MINIMAL)
3 nodes=list(node_data)
4 with open('edges.csv', 'r', newline='')as csv�le:
5 edge_data = csv.reader(csv�le, delimiter=',', quotechar='|', quoting=csv.QUOTE_MINIMAL)
6 edges=edge_data

Listing 4.8: UC I-2: Reading the graph data from Neo4j.
1 Match (n)� [r]� >(m)

we �rst de�ned the schema, e.g., nodes and edges. Listing 4.3 contains the SQL query to de�ne the

schema of the database in PostgreSQL. As shown in Listing 4.4, once the relations were de�ned,

we loaded our graphs into them, viaCOPY in PostgreSQL. For MySQL, Listing 4.5 shows how we

usedload data in�le to store the graphs. Similarly for Neo4j, Listing 4.6 shows the loading of graphs

usingCREATEto create the nodes. Unlike with relational databases, in graph databases like Neo4j,

the schema of a graph (or relation) does not need to be explicitly de�ned prior to storing the data.

The relationships (edges) are created along the way while loading data from.csv�les.

UC I-2: Read/access a graph. Once the database was created, we retrieved the entries to

simulate the process of a data request from an SDAT to perform a user-requested analysis. For

Python-CSV, we loaded the dataset from a CSV �le to a data structure in memory as shown in

Listing 4.7. For MySQL and Neo4j, all the rows of the “nodes” and “edges” tables were loaded

into memory. Listing 4.8 shows how the nodes and relationships were typically loaded in Neo4j

by only using theMatch clause (the data loaded in the memory was not returned/displayed on the

Neo4j browser, i.e., the “return” clause was not used).

UC I-3–UC I-6: Use cases UC I-3–UC I-6 simulate the modi�cation of the model graph and

its elements: adding a new node (UC I-3) as shown in Listing 4.9 for MySQL/PostgreSQL and

in Listing 4.10 for Neo4j; adding a new edge (UC I-4), as shown in Listing 4.11 for MySQL/

PostgreSQL and in Listing 4.12 for Neo4j; renaming a node (UC I-5), as shown in Listing 4.13 for

MySQL/PostgreSQL and in Listing 4.14 for Neo4j; and modifying an edge (UC I-6), as shown in
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Listing 4.9: UC I-3: Creating a node via MySQL and PostgreSQL.
1 INSERT INTO nodes (id, name)
2 VALUES (1, '1');

Listing 4.10: UC I-3: Creating a node via Neo4j.
1 MERGE (:GRAPH { id: '23',name: '23' })

Listing 4.11: UC I-4: Creating a node via MySQL and PostgreSQL.
1 INSERT INTO edges (a,b)
2 VALUES (2, 7);

Listing 4.12: UC I-4: Creating an edge via Neo4j.
1 MATCH (to:GRAPH {name: '23'})
2 MATCH (from:GRAPH {name: '14'})
3 MERGE (to)� [:connects]� >( from)

Listing 4.13: UC I-5: Renaming a node via MySQL and PostgreSQL.
1 UPDATE nodesSET id=6060 WHERE id=2;
2 UPDATE edgesSET source=6060 WHERE source=2
3 UPDATE edgesSET target=6060 WHERE target=2

Listing 4.14: UC I-5: Renaming a node via Neo4j.
1 MATCH (n:GRAPH {id: "1"}) SET n.name="new_name"

Listing 4.15: UC I-6: Changing the source and target of an edge via MySQL and PostgreSQL.
1 DELETE FROM edges
2 WHERE source = 2and target = 3;
3 INSERT INTO edges (source, target)
4 VALUES (2, 42);

Listing 4.16: UC I-6: Changing the source and target of an edge via Neo4j.
1 MATCH (s:GRAPH { name: '13' })� [r:connects]� >(t:GRAPH{name: '19'})
2 DELETE r
3 MATCH (source:GRAPH {name: '23'})
4 MATCH (target:GRAPH {name: '14'})
5 MERGE (source)� [:connects]� >(target)
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Listing 4.17: UC I-7: Deleting a node and its corresponding edges via MySQL and PostgreSQL.
1 MATCH (n:GRAPH) where n.name='3'
2 OPTIONAL MATCH (n)� [r]� ()
3 DELETE n,r

Listing 4.18: UC I-7: Deleting a node and its corresponding edges via Neo4j.
1 MATCH (n:GRAPH) where n.name='3'
2 OPTIONAL MATCH (n)� [r]� ()
3 DELETE n,r

Listing 4.19: UC I-8: Deleting a node and its corresponding edges via MySQL and PostgreSQL.
1 DELETE FROM edges
2 WHERE source = 2and target = 3;

Listing 4.20: UC I-8: Deleting a node and its corresponding edges via Neo4j.
1 MATCH (n:GRAPH {name: '13'})� [r:connects]� >(n:GRAPH{name: '19'})
2 DELETE r

Listing 4.15 for MySQL/PostgreSQL and in Listing 4.16 for Neo4j.

UC I-7–UC I-8: The remaining use cases simulate the deletion process of the model graph and

its elements: deleting a node (UC I-7), as shown in Figure 4.17 for MySQL/PostgreSQL and in

Figure 4.18 for Neo4j; and deleting an edge (UC I-8), as shown in Figure 4.19 for MySQL/Post-

geSQL and in Figure 4.20 for Neo4j.

4.3.5 Time measurement

The ModCP prototype tool is a Windows Forms application and thus, it uses a single-threaded

apartment model.4 We speci�ed a single processor to run the threads of this process to improve the

performance by reducing the number of times the processor cache is reloaded.5 As shown in List-

ing 4.21,ProcessorA�nity was used to associate the threads of the process to a single processor. Then,

we set the overall priority of the above associated process to high by usingProcessPriorityClass.High.
4COM threading model. https://docs.microsoft.com/en-us/previous-versions/dotnet/netframework-3.0/ms182351(v=

vs.80)?redirectedfrom=MSDN [2021/08/24]
5Processor af�nity https://docs.microsoft.com/en-us/dotnet/api/system.diagnostics.process.processoraffinity?

view=net-5.0 [2021/08/24]
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Listing 4.21: Setting the processor priority and af�nity for running the experiment.
1 var testProcess = Process.GetCurrentProcess();
2 testProcess.ProcessorA�nity = (System.IntPtr)1;
3 testProcess.PriorityClass = ProcessPriorityClass.High;

Each of the use cases were implemented on the candidate database technologies ten times, and

the time taken to process the query were recorded from the user interface. The average of query

processing time to implement a use-case taken by the each database was recorded to evaluate the

database technologies. Similarly, the space measurement was noted from the user interface of the

database technology.

4.3.6 System information

The system used for performing the experiment runs Microsoft Windows 10 Enterprise. It has

Intel(R) Core(TM) i7-7700 CPU @ 3.60 GHz, 3600 MHz, 4 cores, 8 logical processors, and 8 GB

of RAM. During the experiment, no user programs other than the test programs were running. A

basic internet connection was on but not used during the experiment.

4.4 Results and analysis

We describe and analyze the results from our objective and subjective evaluation for the databases.

Results are provided in terms of the measures used for each of the evaluations.

4.4.1 Objective evaluation

In this section we discuss the results of a study conducted to evaluate the performance of the

selected database technologies. The complete results of this study are shown in Table 4.3. We

examine the results for individual use cases in subsequent subsections.

In all the plots we present for this comparative study:
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Table 4.3: Time taken to process the use cases, in milliseconds.

Dens. Gr. Technology UC I-1 UC I-2 UC I-3 UC I-4 UC I-5 UC I-6 UC I-7 UC I-8

2%

G1

Python-CSV 0 1 1 1 2 2 3 2

MySQL 5 2 153 156 155 155 156 154

Neo4j 665 18 3 3 6 7 11 2

PostgreSQL 187 30 61 66 63 63 66 65

G2

Python-CSV 0 11 3 8 41 13 39 12

MySQL 188 13 151 154 152 158 155 155

Neo4j 6,852 223 3 3 11 6 13 3

PostgreSQL 236 157 63 67 62 63 64 66

G3

Python-CSV 0 1,923 325 19 2,459 1,694 2,281 1,659

MySQL 14,763 965 152 153 152 156 155 157

Neo4j 47,970 1,753 4 3 14 7 12 3

PostgreSQL 12,989 1,586 63 66 65 67 65 66

10%

G4

Python-CSV 0 2 2 4 3 3 4 3

MySQL 27 2 157 153 152 156 155 156

Neo4j 2,172 157 3 3 8 7 13 2

PostgreSQL 214 138 62 65 62 65 64 65

G5

Python-CSV 0 86 3 153 103 68 70 72

MySQL 694 57 155 154 158 157 157 159

Neo4j 8,936 480 4 4 9 7 13 3

PostgreSQL 519 387 61 66 64 67 66 66

G6

Python-CSV 0 9,327 358 3,093 7,231 7,295 8,640 7,411

MySQL 74,971 4,294 158 153 152 157 154 159

Neo4j 357,118 2,935 3 4 13 6 15 4

PostgreSQL 64,322 1,822 63 66 66 64 63 66

25%

G7

Python-CSV 0 4 2 3 3 4 3 3

MySQL 481 11 153 155 157 156 156 155

Neo4j 2,328 396 3 4 8 7 12 3

PostgreSQL 498 284 60 65 63 65 64 65

G8

Python-CSV 0 163 7 83 281 170 174 89

MySQL 1,572 52 153 155 157 156 155 157

Neo4j 25,739 1,067 3 4 12 8 14 3

PostgreSQL 1,325 819 59 66 64 65 66 64

G9

Python-CSV 0 14,216 363 8,954 26,227 22,683 19,593 20,279

MySQL 130,136 21,980 154 155 161 157 155 158

Neo4j 1,262,200 8,139 4 4 15 7 13 4

PostgreSQL 121,820 5,128 64 65 65 66 64 67
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1. we sort the data according to the number of edges in the graphs, resulting in the following

sequence:G1, G4, G7, G2, G5, G8, G3, G6, andG9;

2. we plot edge count on thex-axis and time taken in milliseconds on they-axis;

3. we plot the data on log–log scales because the core results grow rapidly, otherwise obscuring

their trends; and,

4. we prioritize the number of edges over the number of nodes to compare the database tech-

nologies, as number of edges tends towards being quadratic in the number of nodes, hence

dominating.

Furthermore, we attempt to �t a linear model logy = plogx+ k (basee) to the log–log data,

sorted by edge count, for each technology/use case combination. Because the lower ends of this

data involve numbers of edges that are linear in the number of nodes, we consider only the upper-

most six data points for each in �tting the linear model. We note that such a procedure has potential

statistical imprecision, but suf�ces for the trend comparison between technologies in which we are

interested. We report values for thecoef�cient of determination R2 2 [0;1] (the proportion of the

variance in the dependent variable that is predictable from the independent variable), but we ac-

knowledge that this gives only some information about the goodness of �t of the model: low values

can occur for well-�tting models (e.g., when the �tted line is nearly parallel with thex-axis) and

high values can occur even when the �t is not obviously good. We also consider the visual �t in

cases where our analyses depend on the evaluation of the model.

4.4.1.1 Examination of the use cases

UC I-1: Create or store a graph. Figure 4.2a shows the time taken by the individual database

technologies to store the arti�cially generated graph; Python-CSV does not require any time to

store the model as the dataset is already in CSV format, so its data does not appear on the plot (the

logarithm of 0 is unde�ned). Figure 4.2b shows the results of the linear regressions on the larger

graphs; Table 4.4 shows the observed computation times for each graph, adjacent to the predicted

46



CHAPTER 4. STUDY I: DATABASE TECHNOLOGIES IN ISOLATION

computation times from the �tted linear regression model.

We see that MySQL and PostgreSQL are roughly collinear (their linear regressions place their

slopes at 0.95 and 0.93 with constant -3.66 and -3.50, respectively). Neo4j clearly has higher

overhead (linear regression constant is 1.65) but its computation time appears to grow slightly

more slowly than for the SQL variants (linear regression slope is only 0.72): extrapolating the

�tted models, we would expect the time for Neo4j and PostgreSQL to be equal when the edge

count be in the vicinity of 4.5� 1010. Obviously, this assumes that the growth characteristics can

be extrapolated in this manner; but, aside from the dubiousness of this extrapolation (the �tted

model for Neo4j has anR2 of only 0.73 and visually is not a great �t), this intersection point would

only occur for truly enormous graphs, far beyond any we have encountered or that are likely in

practice, even in extreme situations. Python-CSV obviously outperforms all other competition, but

this is a local anomaly as we will see examining the results for the other use cases.

UC I-2: Read/access a graph.Figure 4.3a shows the time taken to retrieve the graphs from the

database into memory. Both MySQL and Python-CSV were inexpensive to retrieve the model for

graphs with relatively few edges when compared to PostgreSQL and Neo4j; however, the costs for

all the technologies remained low (� 1,067 ms for Neo4j) even in the worst case.

From Figure 4.3b we can see that the steeper slopes of MySQL and Python-CSV lead to a

crossover point at around 106 edges when these two technologies become more expensive to use

than Neo4j and PostgreSQL. Table 4.5 shows the observed computation times for each graph,

adjacent to the predicted computation times from the �tted linear regression model. We found that

MySQL and Python-CSV have approximately the same cost (their slopes are 1.02 and 1.03 with

constant -6.78 and -7.34, respectively). Similarly, Neo4j and PostgreSQL exhibit similar growth

patterns (their slopes are 0.45 and 0.43 with constant 1.31 and 1.29, respectively). Based on these

observations, the best database technology for smaller graphs is either MySQL or Python-CSV,

with PostgreSQL or Neo4j being preferable for larger graphs (above 106 edges), for UC I-2.

UC I-3: Update a graph; Create a node with no edges. Figure 4.4a shows the performance

comparison of the candidate database technologies to create a new node in an existing graph.
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(a) Raw data. (b) Linear regression results.

Figure 4.2: Comparison of edge count versus computation time for UC I-1.

Table 4.4: Computation time to perform UC I-1 per graph relative to data storage technology.
Observed values and values obtained from the �tted model log(time) = plog(edge-count) + k via
linear regression on the log–log data and coef�cient of determinationR2.

G2 G5 G8 G3 G6 G9 p k R2

Python-CSV

observed 0 0 0 0 0 0

modelled — — — — — — — — —

MySQL

observed 188 694 1,572 14,763 74,971 130,136

modelled 165.75 765.31 1,853.04 13,473.28 62,376.07 149,546.57 0.95 -3.66 0.96

Neo4j

observed 6,852 8,936 25,739 47,970 357,118 1,262,200

modelled 3,978.89 12,677.47 24,771.13 111,324.37 355,413.59 689,282.84 0.72 1.65 0.73

PostgreSQL

observed 236 519 1,325 12,989 64,322 121,820

modelled 161.99 724.25 1,721.28 12,003.23 53,805.76 126,645.80 0.93 -3.50 0.99
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(a) Raw data. (b) Linear regression results.

Figure 4.3: Comparison of edge count versus computation time for UC I-2.

Table 4.5: Computation time to perform UC I-2 per graph relative to data storage technology.
Observed values and values obtained from the �tted model log(time) = plog(edge-count) + k via
linear regression on the log–log data and coef�cient of determinationR2.

G2 G5 G8 G3 G6 G9 p k R2

Python-CSV

observed 11 86 163 1,923 9,327 14,216

modelled 13.56 69.77 179.82 1,504.32 7,761.34 19,794.44 1.02 -6.78 0.82

MySQL

observed 13 57 52 965 4,294 21,980

modelled 8.68 45.51 118.59 1,016.75 5,346.36 13,783.86 1.03 -7.34 0.82

Neo4j

observed 223 480 1,067 1,753 2,935 8,139

modelled 243.25 504.37 768.8 1,979.31 4,109.24 6,234.23 0.45 1.31 0.88

PostgreSQL

observed 157 387 819 1,586 1,822 5,128

modelled 193.26 386.74 577.52 1,419.90 2,844.79 4,229.15 0.43 1.29 0.88
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Figure 4.4b shows the results of the linear regressions on the larger graphs; Table 4.6 shows the

observed computation times for each graph, adjacent to the predicted computation times from the

�tted linear regression model.

We see that Python-CSV and Neo4j have the lowest costs cost forG2, but Python-CSV then

scales poorly, leading to the highest cost forG9 (Python-CSV shows a high linear regression slope

of 1.38). We also found that MySQL, Neo4j, and PostgreSQL take essentially constant time to

realize the use case (their linear regressions place their slopes at 0.01, 0.02, and 0.01, respectively).

Neo4j is the best option for UC I-3 as the base cost to create a node is the cheapest and remains

constant for larger graphs. The slightly higher but constant cost for PostgreSQL makes a viable

alternative as well, relative to UC I-3.

UC I-4: Update a graph; Create an edge between existing nodes. Figure 4.5a shows the time

taken by the individual database technologies to create edges in the edge relation (for relational

database technologies) as well as in the link database (for non relational database technologies).

Figure 4.5b shows the results of the linear regressions on the larger graphs; Table 4.7 shows the

observed computation times for each graph, adjacent to the predicted computation times from the

�tted linear regression model.

We see that Python-CSV has near linear growth with respect to edge count (slope is 0.81) and

so it is not competitive with the alternatives. MySQL and PostgreSQL take roughly the same time

(slopes are 0.01 and 0.01, with constants 5.04 and 4.23, respectively). Neo4j also shows essentially

constant performance (slope is 0.02) with lower �xed cost (constant is 1.02). Relative to UC I-4,

MySQL, PostgreSQL, and Neo4j are all viable candidates.

UC I-5: Update a graph; Rename a node. Figure 4.6a shows the time taken by the individual

database technologies to rename the nodes in the node and edge relation (for relational database

technologies) as well as in the link database (for non-relational database technologies). Figure 4.6b

shows the results of the linear regressions on the larger graphs; Table 4.8 shows the observed

computation times for each graph, adjacent to the predicted computation times from the �tted

linear regression model.
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(a) Raw data. (b) Linear regression results.

Figure 4.4: Comparison of edge count versus computation time for UC I-3.

Table 4.6: Computation time to perform UC I-3 per graph relative to data storage technology.
Observed values and values obtained from the �tted model log(time) = plog(edge-count) + k via
linear regression on the log–log data and coef�cient of determinationR2.

G2 G5 G8 G3 G6 G9 p k R2

Python-CSV

observed 3 3 7 325 9,327 14,216

modelled 0.74 6.72 24.12 424.63 3,892.02 13,777.95 1.38 -12.98 0.85

MySQL

observed 151 155 153 152 158 154

modelled 152.07 152.83 153.27 154.26 155.03 155.48 0.01 5.00 0.29

Neo4j

observed 3 4 3 4 3 4

modelled 3.25 3.34 3.4 3.52 3.62 3.68 0.02 1.02 0.09

PostgreSQL

observed 63 61 59 63 63 64

modelled 60.98 61.48 61.78 62.44 62.96 63.25 0.01 4.06 0.23
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