
THE UNIVERSITY OF CALGARY

Supporting Repetitive Small-Scale Changes

by

Mark Michael McIntyre

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF COMPUTER SCIENCE

CALGARY, ALBERTA

SEPTEMBER, 2007

c© Mark Michael McIntyre 2007

THE UNIVERSITY OF CALGARY

FACULTY OF GRADUATE STUDIES

The undersigned certify that they have read, and recommend to the Faculty of

Graduate Studies for acceptance, a thesis entitled “Supporting Repetitive Small-

Scale Changes” submitted by Mark Michael McIntyre in partial fulfillment of the

requirements for the degree of Master of Science.

Supervisor, Dr. Robert James Walker
Department of Computer Science

Dr. Jörg Denzinger
Department of Computer Science

Dr. Dietmar Pfahl
Department of Electrical and Computer Engineering

Date

ii

Abstract

When modifying a software system, a developer may find it necessary to repeat a

given change throughout its source code. While the change itself may not be difficult

to implement, discovering the locations where it should be applied can be onerous.

Syntactic differences in otherwise semantically similar code can render traditional

tools ineffective. This thesis describes a heuristic search technique to help find loca-

tions required to complete a repetitive small-scale change (RSC). By observing the

developer perform a change once, it is possible to infer semantic information about

that change and automatically suggest locations where the same change might need

to be made. This technique is implemented in a tool called Reverb. The utility

of this technique is evaluated by comparing Reverb’s search results against those of

traditional approaches, for RSCs conducted on two open source applications; Reverb

is found to have superior recall and precision in the cases evaluated.

iii

Acknowledgements

It is a pleasure to acknowledge the people who helped make this thesis possible.

First, I wish to thank my supervisor Dr. Robert Walker, to whom I cannot

overstate my gratitude. Without his advice, encouragement, teaching, and occasional

whip-cracking, I would have been lost.

I would like to thank my friends and colleagues at the University of Calgary. Es-

pecially Kevin Viggers, for convincing me to seek out my own topic and re-igniting

my enthusiasm; Reid Holmes, for his advice, inspirations, experience, humour, and

friendship; and, with no less emphasis, Joseph Chang, Brad Cossette, Rylan Cottell,

Puneet Kapur, Shafquat Mahmud, Mohammad Minhaz, Bhavya Rawal, Jamal Sia-

dat, and Carmen Zannier for their consultation, advice, and help in my adjustment

to life in Calgary.

For helping me express my technique in mathematical notation, I thank Dr. Jörg

Denzinger.

For their unconditional love and support, I thank my parents, Arthur and Linda;

my sister, Lindsay; and my partner, Mark Driedger. Thank you all. I could not have

finished this thesis without you.

Finally, I owe much of my fascination with technology to a man whom I do not

know. During the summer of 1986, it was decided—without my consultation—that

my birthday present was to be a skateboard instead of the Nintendo Entertainment

System for which I had repeatedly requested. It was while wandering the isles of

Toys ‘R Us, ostensibly to look at skateboards (I had purposely meandered off alone

to see the Nintendo section), that my parents witnessed a man, also looking for a

iv

skateboard as a gift, slip and concuss himself while trying out the new toy. Sometime

between the arrival of the fire department and ambulance, and without knowing if

this man had regained consciousness, my parents conceded that a Nintendo might

be the safer gift. My first Nintendo was received on my sixth birthday. I suppose

I’ve been enchanted by technology ever since.

v

Table of Contents

Approval Page ii

Abstract iii

Acknowledgements iv

Table of Contents vi

1 Introduction 1
1.1 Proposed Technique . 3
1.2 Thesis Statement and Organisation 4

2 Motivation 5
2.1 Migrating to a Logging Framework 5
2.2 Migrating to a New Iteration Syntax 7
2.3 Repetitive Small-Scale Changes . 11
2.4 Summary . 13

3 Detecting Repetitive Small-Scale Change Targets 15
3.1 Usage Scenario . 15
3.2 A Model for Code Comparison . 18

3.2.1 Facts . 19
3.2.2 Attribute Attachment . 20
3.2.3 Fact Associations . 22

3.3 Query Formation . 27
3.4 Ranking Similarity . 30
3.5 Prototype Implementation . 35

3.5.1 Fact Selection . 37
3.5.2 Manual Query Refinement . 37

3.6 Summary . 39

4 Evaluation 42
4.1 Moving to a Logger Framework . 43
4.2 Migrating to For-Each Loops . 48
4.3 Evaluating The Fact Selection Process 54

4.3.1 Moving to a Logger Framework 56
4.3.2 Migrating to a for-each loop 56

4.4 Summary . 58

vi

5 Discussion 62
5.1 Semantic Similarity . 62
5.2 Granularity and Inter-Method Relationships 64
5.3 Performing an Example Change . 66
5.4 Defining Change Snapshot Points . 66
5.5 Fact selection . 67
5.6 Ranking similarity . 68
5.7 Performance . 69
5.8 User refinement . 70
5.9 Summary . 70

6 Related Work 72
6.1 Clone Detection . 72
6.2 Plagiarism Detection . 74
6.3 Refactoring . 75
6.4 Exact Search Approaches . 76
6.5 Approximate Search Approaches . 78
6.6 Correlating Changes . 79
6.7 Programming by Example . 80
6.8 Other Related Work . 80
6.9 Summary . 80

7 Conclusion 82
7.1 Future Work . 83

Bibliography 85

A Loop Migration Locations in JHotDraw 94

vii

List of Tables

3.1 Basic Fact Types . 19
3.2 Attribute List . 23
3.3 Association List . 27

viii

List of Figures

2.1 Debug statements in Apache Struts 6
2.2 Non- logging-related DEBUG flag . 7
2.3 Global DEBUG flags . 7
2.4 A broad range of changes . 12

3.1 An example change made to JHotDraw 16
3.2 Invoking reverb . 17
3.3 The Reverb Results View . 18
3.4 Sample method . 20
3.5 Extracted fact types . 21
3.6 Extracted attributes . 24
3.7 Dataflow similarity . 26
3.8 Extracted associations . 28
3.9 Discovering matches in pseudocode 34
3.10 The FactBase Comparison window 39
3.11 The Refine Query dialog . 40

4.1 Truncated results for the debug example 46
4.2 Precision and recall versus Similarity for Debug Example 47
4.3 Precision versus recall for the debug example 47
4.4 Precision and recall for Lexical Search 48
4.5 Possible collection iteration migration in JHotDraw 49
4.6 Results for object-based iteration migration 52
4.7 Precision and recall versus similarity for object-based iteration 53
4.8 Precision versus recall for object-based iteration 53
4.9 Results for the index-based iteration migration 54
4.10 Precision and recall versus similarity for index-based iteration 55
4.11 Precision versus recall for index-based iteration 55
4.12 Automated versus unautomated results for a logging framework . . . 57
4.13 Refined versus unrefined results for while-loop migration 59
4.14 Refined versus unrefined results for for-loop migration 60

5.1 A pair of possibly similar code segments 63
5.2 A second pair of possibly similar code segments 63
5.3 An inter-method RSC relationship . 65

ix

Chapter 1

Introduction

As software systems evolve [Parnas, 1972; Belady and Lehman, 1976; Lehman and

Parr, 1976; Lehman and Belady, 1985], small-scale changes are often required [Pu-

rushothaman and Perry, 2005]. While these changes can be as small as a few lines

of code, they may occur in repetition—requiring attention in multiple locations

throughout a software project. These changes may also vary between repetitions,

creating difficulties for many traditional approaches. Any small-scale change task

can potentially be a repetitive small-scale change (RSC); the difficulty lies in de-

termining whether additional targets exist and discovering the locations of those

targets.

We introduce this thesis with a short example: Debug statements help developers

understand the execution of their code by outputting information to a log file or

console screen as a program’s statements are executed. While this information is

useful to the developer, it should be removed from the program before it is deployed

so end-users do not have to suffer through the output, or its resulting performance

decrease.

Traditionally, developers guard their debug statements with a DEBUG flag, a con-

dition that the program checks before executing any debug-related statements. If

the program is configured to output the debug information by setting this flag to

True, then the debug statements are processed; otherwise they are ignored. Using

the syntax of the Java programming language, this often manifests itself as follows:

1

2

if (DEBUG)

System.out.println("Value of x is: " + x);

This approach, while effective, has drawbacks. The DEBUG flag can only be on or

off, the results cannot be configured (by, for example, filtering, changing the order,

or re-formatting the outputted statements), and the differentiation of informational,

debugging, error, and warning situations is difficult.

A better solution is to make use of a logging framework. Logging frameworks

relegate management of the debug information to a centralized component, and new

features can be added to the framework without much disruption. A typical logging

framework may use the following syntax:

log .debug("Value of x is: " + x);

where log is a reference to a logging framework object, debug is a message indicating

that some debugging information is to be collected, and the parameter is a String

representing the debug information.

If a developer wishes to change all guarded print statements to use a logging

framework instead, he runs into practical difficulties. A lexical search for “debug” is

likely to return comments about the need to debug certain functionality. The search

may also miss diagnostic output statements that are not guarded with a test of the

DEBUG flag, or be unable to distinguish the cases that denote informational output

from those that denote warnings or errors.

In general, a problem arises when attempting to discover the targets of an RSC

using traditional tool support. The targets of an RSC can be similar, but not iden-

tical. Brute force investigation requires much time and effort from the developer,

3

likely leading to mishandled situations. Clone detectors [Baxter et al., 1998; Kamiya

et al., 2002; Li et al., 2006; Duala-Ekoko and Robillard, 2007] and lexical search tools

[Crochemore and Perrin, 1988; Miller and Marshall, 2004] are geared towards dis-

covering identical matches. Regular expressions [Brzozowski, 1964; Baeza-Yates and

Gonnet, 1989; Clarke and Cormack, 1997] and exact query languages [Holt, 1999;

Janzen and Volder, 2003; Beyer, 2006] require special attention to the lexical pattern

of the change, if one exists. Refactoring tools [Opdyke, 1992; Griswold and Notkin,

1993; Tokuda and Batory, 1999; Fowler, 2002] provide pre-defined transformations

with a heavy emphasis on correctness; new refactoring tools must be created for

specific problems.

1.1 Proposed Technique

Our approach to finding RSC target locations is to extract a set of facts from an

example change and use those facts to search for locations where a similar change

should be made. Facts can be extracted from any code segment and can represent

variable declarations, messages and parameters passed between references, control

flow graph information, and other explicit or inferred data.

When combined with information about a change, this extracted information can

be used as a search heuristic to locate places related to that change. More specifically,

given a “before” and “after” snapshot of a change, the set of facts extracted from

the code segment can be reduced to those most relevant to the change. Searching

the remainder of the codebase for these change-related facts should yield locations

likely to require the same change.

4

To evaluate our approach, we have implemented it as a tool called Reverb. Re-

verb observes the developer as he navigates about a source project to automatically

create the necessary “before” and “after” snapshots of small-scale changes. Upon

request, Reverb will search the codebase for locations where the most recently ob-

served change could also be applied. The results are returned as a sorted list of

methods relevant to the query and can be browsed sequentially until the developer

is satisfied that the RSC has been completed.

1.2 Thesis Statement and Organisation

The thesis of this dissertation is that a semi-automated heuristic search discovers

target locations for repetitive small-scale changes with better precision and recall

than traditional techniques, and with a greater tolerance to variation.

The remainder of this thesis is organized as follows. Chapter 2 presents a mo-

tivational example to better demonstrate the problem. Chapter 3 describes our

proposed solution and its implementation. Chapter 4 evaluates the performance of

our technique relative to traditional approaches. We end with a discussion of our

technique’s drawbacks and future direction (Chapter 5) and a presentation of related

work (Chapter 6).

Chapter 2

Motivation

The focus of this thesis is on assisting repetitive, small-scale changes (RSCs). To

better understand the nature of these changes, and why they are problematic, we

examine two motivational scenarios. In Section 2.1, we consider improving the log-

ging mechanism in Apache Struts 1.1 to use a logging framework instead of guarded

“debug” statements. In Section 2.2, we consider using a new for-loop syntax intro-

duced by Version 5 of the Java programming language in an open-source drawing

application called JHotDraw. We discuss a classification of changes in Section 2.3.

2.1 Migrating to a Logging Framework

Consider a developer charged with the task of ensuring that guarded print statements

in Apache Struts 1.1 (a popular web application framework written in the Java

programming language) are made to consistently use a logging framework.

The Struts codebase, for the most part, uses such a framework. However, there

are exceptions, as demonstrated in Figure 2.1. Code Sample A uses a logging frame-

work; a string representing some textual debug information is sent to the logger,

and depending on how that logger is configured, the information is either ignored or

sent to a log file, memory dump, or console. Code Sample B uses a DEBUG flag to

guard a standard println message. The debug output is either output directly to

the console where it cannot be organized or re-ordered, or not at all. Both of these

5

6

// Code Sample A
log .debug("LogonAction: User ’"

+ user.getUsername()
+ "’ logged on in session "
+ session.getId ());

// Code Sample B
if (debug)

System.out.println("Got definition "
+ catalogDef);

Figure 2.1: Two inconsistent debug statements found within the Apache Struts
distribution.

examples were found within the Apache Struts distribution, but they output debug

information inconsistently. Ideally, all debug statements would be output using the

debugging framework demonstrated in Code Sample A instead of the guarded print

statement in Code Sample B. The developer wishes to find examples of the latter

and modify them. While modifying any particular guarded print statement to use

a logging framework is a straightforward procedure, discovering the locations where

such modifications are required is more onerous.

The simplest approach to discovering these locations may be to use the search

and replace features of the developer’s integrated development environment (IDE).

However, a search for the term “debug” over the Apache Struts codebase returns

234 hits. The developer must look through each of these hits before determining that

214 of them are false, either using the debug(...) method already, being embedded

within the program comments, or otherwise being unrelated to the task at hand.

With sufficient determination, it is possible to look through all the unordered results;

however, time pressures and fatigue may result in missed legitimate occurrences.

7

catch (DefinitionsFactoryException ex) {
if (debug)

ex.printStackTrace();
// Save exception to be able to show it later
saveException(pageContext, ex);
throw new JspException(ex.getMessage());

}

Figure 2.2: A DEBUG flag used for non-logging purposes in Apache Struts

// Code Sample A

/∗∗
∗ Debug flag.
∗ @deprecated This will be removed in a release after Struts 1.2.
∗/

public static final boolean debug = false;

// Code Sample B

/∗∗ debug flag ∗/
public static boolean debug = true;

Figure 2.3: Different global DEBUG flag used in Apache Struts. The word “debug”
also occurs in the comments.

Another approach may be to use the syntactic search features of the IDE; however,

a similar problem manifests itself. Not all references to a global variable named

“debug” are necessarily used for guarded print statements (Figure 2.2), and the use

of local variables and multiple global variables can complicate matters (Figure 2.3).

2.2 Migrating to a New Iteration Syntax

A for-loop is a programming construct that allows a statement or sequence of state-

ments to be executed in repetition, once for every incrementation step until a speci-

8

fied condition is reached. In some object-oriented languages, this syntax can be used

in conjunction with the Iterator design pattern [Gamma et al., 1993] to help traverse

collections of items.

The following example, written using the syntax of the Java programming lan-

guage, shows a collection traversal using a for-loop. An object of type Iterator is

initialized from a collection c. Using the for-loop, each of the items in the collection

are traversed via the Iterator’s knowledge of the collection. Subsequently, each of

these items is sent a stop() message, presumably requesting that the item cease its

activities.

private void stopAll(Collection c) {

for(Iterator i = c. iterator (); i .hasNext() ;) {

Stoppable s = (Stoppable)i.next();

s .stop();

}

}

While this syntax performs well and is traditionally considered a good program-

ming practice, exposing an Iterator class to the developer requires the developer to

couple that class being written to Iterator. This can also cause programmer error; a

common mistake is to accidentally invoke the next() method instead of hasNext()—

effectively skipping an element at each iteration—or invoking the next() method too

deep within a nested iteration structure [Sun Microsystems, 2004].

The Java programming language [Gosling et al., 2005] was revised in September

2004 with the introduction of Version 5.0. Among the new features in this version

9

is a new for-loop syntax1 that can iterate over container classes without the need

to expose a separate Iterator or Enumerator class2. This syntax relegates the re-

sponsibility of managing the incrementation and end conditions to the Java language

itself, reducing the potential for programmer error. The resulting code also appears

less cluttered and easier to understand [Sun Microsystems, 2004].

We can rewrite the above method using Java 5’s for-each syntax as follows:

private void stopAll(Collection<Stoppable> c) {

for(Stoppable s : c)

s .stop();

}

By migrating the example to the new for-each syntax, the size of the method has

been reduced, the explicit coupling and management of the Iterator class has been

removed from the source, and there is less likelihood for programmer error.

Although the old collection iteration syntax has not been deprecated or removed,

it is reasonable for developers to desire that their source code be updated to use

the new syntax. The rewards of such an activity might not seem worth the effort

via traditional tools, but adequate software assistance might change that perception.

This is particularly true if a software project has a reasonably long expected life-span,

as improved modularization assists evolvability [Sullivan et al., 2001], and improving

the encapsulation of iteration mechanisms is a form of modularization.

Consider, for example, a developer who is faced with migrating JHotDraw 5.4

(a graphical user interface framework for technical diagrams) to use the new for-

1This is sometimes referred to as a for-each loop, although the Java keyword remains “for”
2This feature is implemented via parameterized classes; the new syntax implicitly uses the

iterative functions of the collection class.

10

each syntax. While this framework was created with best programming practices in

mind, it was developed before the for-each iteration syntax was introduced to the

Java language.

Collection iteration is traditionally performed in two ways, and JHotDraw uses

a mixture of both, depending on the data structure being traversed. The first uses

an Iterator or Enumeration class to traverse the collection. This is normally done

in a while-loop, but can be done using a for-loop as well. The second way is to use

a numerical index. This is almost always done within a for-loop, and is particu-

larly common when traversing simple array types. Both of these methods can be

transformed to the new for-each loop.

Migrating these iterations at any particular location is usually straightforward.

The change is localized within each target, and there is a clear set of steps one

can perform to change the old syntax into its new form. However, gathering these

locations in the first place is not easy.

A simple, common approach to finding the index-based targets would be to per-

form a lexical search for the keyword “for” using the search-and-replace feature

of the developer’s IDE. However, performing such a search on JHotDraw returns

3977 results; 3886 of these results are false positives, containing for-loops unrelated

to collection iteration. The remaining 91 are true positives, but are not presented

by the IDE in any particular order, thereby requiring that the developer investigate

all 3997 results manually.

For object-based iterations, the developer could choose to perform a syntactic

search for references to the Iterator type using syntactic search, but this only

returns 78 results and only 38 of those are true positives. 52% of the results are false

11

positives, and 49% of the locations are false negatives (missed entirely).

2.3 Repetitive Small-Scale Changes

Although individual changes may be small, their repetition becomes problematic.

Migrating to a debug framework and updating code to use a new for-loop syntax are

both difficult scenarios to address with traditional techniques. A tool to help locate

the desired targets could improve the situation.

When a change is introduced into a codebase, it is important to understand what

effect that change will have on the existing code [Yau et al., 1993]. If the new change

is part of a major unplanned feature or modifies widely used interfaces, substantial

restructuring may be required. If, on the other hand, the change involves a localized

behaviour, it may be possible to accommodate the change by modifying a single line

of code.

The motivational examples presented in the previous section are problematic—

at least in part—due to the repetition of the modifications required to complete the

change. The unknown extent of the repetition makes locating the appropriate target

locations difficult using traditional tools. We term this class of changes as repetitive

small-scale changes (RSCs).

It is important to note that not all RSCs are problematic or un-addressable with

existing techniques and methods. While the examples presented at the beginning of

this chapter were inadequately solved via traditional techniques, there are classifi-

cations of RSCs that are well addressed through traditional methods. Renaming a

class or data structure within a codebase, for example, could be classified as RSCs,

12

RepetitiveIsolated

Large-Scale

Small-Scale

Identical

Varied

Figure 2.4: A broad range of changes

but can also be applied instantly via lexical search and replace3. Even in the cases

where search and replace will not properly rename an entity, generalized refactoring

tools normally perform this without error.

Some RSCs are more difficult to perform than others via traditional techniques.

To understand why, we consider the set of all changes with respect to three axes

having a direct impact on the resources required to implement each change. These

axes are, respectively, the repetitiveness of the change, the scale of the change, and

the variance of the change. Any particular change made to a codebase would fall

somewhere inside the three-dimensional space formed by these axes. A diagram of

this space is presented in Figure 2.4.

A multi-line lexical search tool spans the plane formed by the repetitiveness and

3This, of course, depends on the uniqueness of the name being replaced, but many programmers
employ best practices and naming conventions to avoid hard-to-change names.

13

scale axes, but is restricted on the variance axis to the “identical” end, only finding

segments of identical code. Regular expressions increase the variance range slightly,

permitting simple lexical variations, but are still relatively limited to the identical

side of the variance axis. Regular expressions also limit the range of the scale axis, as

large-scale regular expressions become burdensome in complexity. Clone detectors

too, are limited to a small range along the “identical” side of the variance axis.

As we plot related work in the problem space, a commonality emerges; traditional

techniques that span most of the repetition axis normally require limited variation

to deliver the best results. The more varied and repetitive a change becomes, the

fewer the techniques that are available to solve it.

We assert that the motivational examples in this chapter are problematic not

only because they are repetitive, but also because they have variation. Intuitively,

these changes are semantically similar, but lack the lexical or syntactic similarity4

necessary for traditional approaches to function well.

2.4 Summary

Significant cost may be expended on making changes to existing code, even if the

individual changes are trivial to perform. Finding each target location for an RSC

is not adequately addressed by the most popular tools designed to locate sections

of code. Lexical search and replace and regular expressions both require a lexical

pattern to return a match; RSCs, however, may have significant syntactic variation

while retaining extremely similar semantics. A syntactic search does consider certain

4We discuss the concept of semantic similarity and its consequences to our implementation in
Section 5.1

14

language semantics to eliminate some of the false positives that a lexical search may

otherwise return, but lacks a compositional aspect; that is, it still finds occurrences of

a lexical string (while paying attention to type) without considering the relationship

that string has to the structures around it.

While the repetition of the changes are a fundamental facet of the problem, we

determine the variation to be a key part of what makes these particular changes

problematic. A tool that addresses RSCs with a semantic similarity, but lexical

variance, would help alleviate the problem.

Chapter 3

Detecting Repetitive Small-Scale Change Targets

We propose a technique to detect relevant RSC targets based on a prototypical

change. A developer can normally demonstrate an RSC target by changing a known

location. Structural and semantic facts extracted from this prototype can help form

a query suitable for locating other, potential RSC target locations. If the prototype

contains facts related to the change’s code and structure, semantic queries may be

formed without significant developer input.

In this chapter we explain our technique and describe our prototype tool, Reverb1.

We begin by presenting a brief usage scenario of Reverb in Section 3.1. In Section

3.2, we describe the data model used to form queries and compare methods. We

discuss how queries can be formed from this model in Section 3.3 and discuss how

similarity is measured in Section 3.4. The implementation details of the Reverb

prototype are discussed in Section 3.5.

3.1 Usage Scenario

Before describing our technique, we present a brief RSC target discovery scenario

based on Reverb, our prototype tool. In particular, we consider going about the task

described in Section 2.2.

1The word reverb is the nounal form of reverberate, “to have a prolonged or continuing effect;
to resound in a succession of echos” [Houghton Mifflin Company, 2004]. We chose this title for its
cognitive imagery of quickly repeating an action throughout a defined space.

15

16

// A JHotDraw method iterating through a collection
protected void basicMoveBy(int dx, int dy) {

Iterator iter = points();
while (iter .hasNext()) {

((Point) iter .next()). translate (dx, dy);
}

}

// The same JHotDraw method after changing it to use
// the new Java 5 for−loop syntax.
protected void basicMoveBy(int dx, int dy) {

for(Point p : fPoints)
p. translate (dx, dy);

}

Figure 3.1: An example change made to JHotDraw. The developer modifies a code
segment iterating over a collection class to use the new Java 5 for-loop syntax.

The developer begins by performing an example small-scale change manually

within the Eclipse integrated development environment (IDE) with the Reverb plu-

gin installed. The developer navigates to an iterator-based loop somewhere in the

JHotDraw code base and changes it to use the new Java 5 for-loop syntax2. An

example of this change is presented in Figure 3.1.

The single change is straightforward, but might need to be repeated to complete

the RSC. To discover locations that may require a similar change, the developer in-

vokes Reverb by clicking the search icon in the toolbar or right-clicking on the method

and selecting the “Find Similar” option (Figure 3.2). This extracts information from

the example change and launches the query process.

After the query has executed, the Results View (Figure 3.3) appears in the Eclipse

2We assume that the relevant container classes have already been updated to use Java’s
Iteratable<E> interface.

17

Figure 3.2: Invoking reverb

workspace.

The Results View contains a list of methods that were found in the source project,

sorted by their similarity to the sample change. Similarity is indicated by a metric

calculated during the query process, and Reverb places a check-mark beside the most

highly ranked results3. From our perspective, highly ranked methods are locations

in the source code that likely require the same change, according to the query.

As the developer browses the list of returned methods, he can double-click any

of them to open a new Java editor in the Eclipse workspace containing that method.

As relevant methods are browsed, the developer can perform the necessary changes

in the editor and continue browsing through the list. The process stops once we are

satisfied that the RSC is complete, usually indicated by advancing into poorly-ranked

results, or encountering a noticeable section of false hits.

3In our prototype implementation, the threshold similarity metric used to designate a check-
mark is hard-coded, and not derived from any statistical analysis of the results. We discuss this
more in Chapter 5

18

Figure 3.3: The Reverb Results View. Each item listed represents a method in the
project. The methods are presented in order of their similarity to the change that
was just made.

3.2 A Model for Code Comparison

To analyze similarity between two code segments, we require comparable information

from each. Information about the code structure, dataflow, control-flow, references,

and other entities can be pre-processed and included as “facts” about any particular

segment. This abstract representation of the code can be tested for the existence of

individual facts and establish a means to detect and compare defined changes.

Determining what constitutes a “code segment” depends on the goals of the

comparison. Since we are dealing with changes on the small-scale and would like

to extract the changes automatically, we define a code segment as a single method.

While adopting a limited scope affects the sort of changes that can be compared (we

discuss these in Chapter 5), methods have well-defined boundaries and interfaces

that facilitate real-time analysis.

Facts can be extracted from methods via the project’s abstract syntax tree (AST).

An unoptimised parse tree, in particular, is verbose enough to contain all informa-

19

Fact Name Fact Description
Reference A reference to some data
Method A Java method or operation

MethodInvocation An invocation of some method or operation
CFGNode A node in the control flow graph

Table 3.1: The four basic fact types used by our technique.

tion4 available about the original code in a format that can be searched more easily

than the original source text.

For our model, the information extracted from each method is comprised of three

major entities: facts, which I discuss in Section 3.2.1; attributes, discussed in Sec-

tion 3.2.2; and associations, presented in Section 3.2.3. Together, we refer to this

information as a factbase.

3.2.1 Facts

The information of greatest importance to our technique is contained within simple

facts extracted from a method. A fact itself is simply a declaration that something

exists within a particular method. This may include references, nodes in the control

flow graph, method invocations, and the method signature itself. Table 3.1 describes

each of these fact types.

The fact types listed in the above table are not intended to represent all the

information that could be available in a method. Rather it indicates the existence of

high-level structures often related to RSCs. These facts can appear in any number

from 0 to many in association with a method, with the exception of the Method fact

4The AST used by the Eclipse Framework can be used to output the original code, for example.

20

public void SampleMethod(String s) {

if (s .equals("foo"))
s = "Foo to you too.";

else if (s .equals("bar"))
s = "Bar none.";

else
s = "What?";

System.out.println("s has been re-assigned to: ");
System.out.print(s);

}

Figure 3.4: An example Java method.

type which occurs exactly once. That is, several references, control flow graph nodes,

and method invocations can occur inside a method, but declarative information

about the method itself can only be stored once. Operators (such as +, ++, <=, etc)

are also treated as MethodInvocations.

To better understand the high-level information extracted into facts, compare

the Java method presented in Figure 3.4 to the facts extracted from that method in

Figure 3.5. As seen in these two figures, the extracted facts are declarations of the

existence of high-level elements.

3.2.2 Attribute Attachment

Declaring the existence of certain fact types is not enough. Not only do methods

often contain more than one of the same type of fact, but we may envision scenarios

where it is important to know information attributed to each fact. For example, we

may wish to know the return type of a method invocation, the name of a variable, or

21

Fact Type Description
Method The SampleMethod signature

Reference The s parameter
Reference The "foo" literal
Reference The "foo to you too." literal
Reference The "bar" literal
Reference The "Bar none." literal
Reference The "What?" literal
Reference The System.out external reference
Reference The "s has been re-assigned to: " literal

MethodInvocation The first equals message
MethodInvocation The second equals message
MethodInvocation The println message
MethodInvocation The print message

CFGNode The if condition and block
CFGNode The else if and else blocks
CFGNode The else if condition and block
CFGNode The else block

Figure 3.5: Types of facts extracted from the code sample in Figure 3.4

22

whether a reference is a literal. In order to perform more complex queries involving

these types of information, extra knowledge beyond the mere existence of facts is

required.

We provide this information through the use of attributes. A fact attribute is an

additional bit of information about any particular fact. An arbitrary number of these

attributes may be attached to a given fact during the fact extraction process, and

a query is welcome to place importance on or ignore any number of the associated

attributes. The attributes themselves are represented by simple key-value pairs,

where the key is a pre-defined description of the attribute type, and the value is any

comparable data type.

A list of the attributes used in our prototype implementation, along with their

associated fact types and a brief description of the values each takes, is presented in

Table 3.2. Figure 3.6 shows attributes extracted from the code sample in Figure 3.4

that have been added to the appropriate facts. The attribute definitions in this figure

are also those used by the Reverb implementation, though none are explicitly required

by our proposed approach or specifically affect the similarity ranking process. In

the development of Reverb, attributes were added, removed, and renamed without

having to change the similarity calculation algorithms, for example.

3.2.3 Fact Associations

In addition to facts and attributes, we need a way to relate facts to each other.

Information about where facts occur in the code’s structure, and how data flows

between references may be required to more accurately detect similarities. Our

technique accomplishes this through associations. An association is a labeled directed

23

Attribute Name Fact Type Description Possible Values
isType All The type of fact catchClause, for-

Loop, whileLoop,
forEachLoop,
ifTrue, ifFalse, try,
[any resolved data
type]

hasName Method, Reference,
MethodInvocation

The assigned name
or operator name [any Java name]

isConstructor Method Whether or not a
method fact is a
constructor

true, false

returnsType MethodInvocation,
Method

The return type
[any resolved data
type]

isA Reference Reference designa-
tion

literal, returnValue,
variable

isLoop CFGNode Whether or not the
CFGNode is a loop

true, false

hasValue Reference The value of a lit-
eral [Any numerical,

boolean, character,
or string value]

isParameter Reference Whether or not
a reference is a
method’s parame-
ter

true, false

Table 3.2: Attributes used by the Reverb implementation.

24

Method :

hasName SampleMethod

Reference :

hasName s

isType String

isParameter true

CFGNode :

isType ifTrue

CFGNode :

isType ifFalse

MethodInvocation :

returnsType boolean

hasName equals

Reference :

isType java.lang.String

isA literal

hasValue foo

Reference :

isType java.lang.String

isA literal

hasValue Foo to you too.

CFGNode :

isType ifTrue

CFGNode :

isType ifFalse

MethodInvocation :

returnsType boolean

hasName equals

Reference :

isType java.lang.String

isA literal

hasValue bar

Reference :

isType java.lang.String

isA literal

hasValue Bar none

Reference :

isType java.lang.String

isA literal

hasValue What?

MethodInvocation :

returnsType void

hasName println

Reference :

isType java.lang.String

isA literal

hasValue S has been re-assigned to:

MethodInvocation :

returnsType void

hasName print

Figure 3.6: Attributes extracted from the method in Figure 3.4.

25

edge between two facts that establishes a relationship. These relationships can store

information about dataflow among references, the control flow graph structure, or

other important associative properties.

Like attributes, associations can be defined on an implementation basis. Adding

or changing associations in different implementations of our technique does not affect

the core calculation process. However, there are certain relationships that we believe

are fundamental to the discovery of relevant RSC target locations. These are dataflow

information between references, and presence within the control flow graph. We

discuss them in turn.

Dataflow associations An important similarity between two syntactically differ-

ent code segments could be the overall flow of data in their execution. For example,

the two code segments presented in Figure 3.7 differ primarily in the syntax of how

information is passed from one reference to another. While the second code seg-

ment lacks the additional reference declaration, data still flows from the method

parameters to the attributes of the println method. By pre-processing the po-

tential dataflow paths and including them as associations between facts, some false

negatives can be avoided.

The dataFlowsFrom association helps identify the origin and flow of data. It

is possible for any single reference to be the target of multiple data flow paths.

Whether or not the data actually flows to a particular reference in execution (due to

conditional branches or user input, for example) is not relevant to the calculation. If

dataflow information is selected as being important for the query, then it still needs

to be addressed during the RSC process, regardless of the likelihood of it occurring

26

// Code Sample A
public void sampleA(String s1, String s2) {

String temp = s1 + s2;
System.out.println(temp);

}

// Code Sample B
public void sampleB(String s1, String s2) {

System.out.println(s1 + s2);
}

Figure 3.7: The origin of the data passed to the output statement is the same in
these two code segments.

during execution. Additionally, the dataflow target of a literal or parameter should

be itself, in addition to whatever other assignments that reference takes.

Control flow graph structure A second association of importance is the exis-

tence of any particular fact within the control flow graph. This may include other

control flow graph nodes, in addition to the other non-Method fact types. For exam-

ple, the motivational example presented in Section 2.1 involved a search for output

statements guarded by a debug condition. If the output statement is not contained

within a branch testing for the right condition, then it should not be considered a

potential RSC target. The inCFG association helps distinguish such scenarios.

With the exception of dataflow and control flow relationships, association defini-

tions are not specific to our technique, and any can be added on an implementation-

by-implementation basis without affecting the similarity calculation process. During

the development of Reverb, for example, relationships were added and renamed with-

out consequence to the similarity metrics.

Table 3.3 provides a list of the associations used in our prototype implementation

27

Association
Name

Description Origin Destination

hasParameter Specifies that a ref-
erence is a parame-
ter to a method in-
vocation or opera-
tion, or a method
signature

MethodInvocation,
Method

Reference

inCFG Specifies that a des-
tination fact is in-
side the specified
CFG node

Reference, Method-
Invocation, CFGN-
ode

CFGNode

dataFlowsFrom Specifies that data
flows from one fact
to another

Reference Reference, Method-
Invocation

invokedOn Specifies that a
message is sent to
an object reference

MethodInvocation Reference

Table 3.3: Associations used by the Reverb implementation

along with a description. Figure 3.8 shows the associations extracted from the code

sample in Figure 3.4.

3.3 Query Formation

We would like to discover RSC target locations based on an example change, not a

full profile extracted from a method. While the data model discussed in Section 3.2

allows us to form a high-level, comparable representation of methods, we selectively

match data based on a prototypical change.

By collecting facts about what has changed, information relevant to locating

targets that require the same or a similar change may be extracted. In particular,

information that is missing or changed from the “before” snapshot in the “after”

snapshot is likely of interest.

28

Reference

(s)

CFGNode

(if)

inCFG

Reference

(“Foo to you too.”)

dataFlowsFrom

CFGNode

(if)

Reference

(“Bar none.”)

CFGNode

(else)

Reference

(“What?”)

dataFlowsFrom

inCFG inCFG

MethodInvocation

(equals)
hasParameter Reference

(“foo”)

invokedOn

inCFG

CFGNode

(else)

inCFG inCFG

MethodInvocation

(println)

invokedOn

Reference

(“bar”)

hasParameter

inCFG

dataFlowsFrom

inCFG

MethodInvocation

(equals)

Reference

(“S has been re-assigned to:”)

hasParameter

MethodInvocation

(print)
hasParameter

Figure 3.8: Associations extracted from the code sample in Figure 3.4

29

Our technique forms queries based on set arithmetic. The factbase extracted

from the “before” snapshot can be compared to that of the “after” snapshot; facts

that are missing or have changed attributes in the “after” snapshot are added to the

query, and facts that remain the same or are new to the “after” snapshot are ignored.

Note that it is possible for set arithmetic to select irrelevant facts, depending on the

nature of the change being queried. For scenarios in which this arithmetic forms an

inappropriate query, some user intervention in the form of query refinement may be

necessary. Query refinement is discussed in Section 3.5.2.

To better explain the query formation step, we introduce a notation representative

of our factbases and their transformations:

We represent the “before” and “after” snapshots of the demonstrated example

source as Bsource and Asource respectively. While querying the source code, we rep-

resent the method being considered for similarity comparison—essentially a second

“before” snapshot—with Btarget. The transformation applied by the developer can

be considered a second “after” snapshot, Atarget.

The process by which a factbase is extracted from each of the snapshots is rep-

resented by the function Factbase(m), where m is any method snapshot, and the

result is the factbase extracted from m.

Once two factbases are extracted, we can compute the difference between them

with the function Diff (fb1, fb2), where fb1 and fb2 are both method snapshots. The

result from the Diff function is a new factbase, the set of modifications and deletions

between the two factbases fb1 and fb2.

Our query set is then represented as follows:

Queryset = Diff (Factbase(Bsource), Factbase(Asource))

30

Once a query consisting of important facts has been derived, a means to rank

similarity based on that query is required.

3.4 Ranking Similarity

Similarity assignment and ranking is the most important step in the RSC target

location process. From the developer’s perspective, this is also how relevant locations

are defined and presented after an example change has been provided and the query

has completed. A method is said to be similar to another if a subset of facts,

attributes, and associations is closely matched to the other. The more of these facts

that are matched, the higher the similarity.

For our technique, similarity is represented as a real number in the range from

0 to 1, where 1 represents complete similarity based on the provided query, and 0

represents complete dissimilarity. It should be noted that these rankings are based on

the facts deemed important by the query; two methods that are ranked as completely

similar are not necessary identical, but may contain all the facts that are expected

by the query.

To compute the similarity value, we first define a function, Bestmatch(f, fb1, fb2),

which determines the best possible match within the factbase fb1 for the fact f , with

respect to the facts in fb2.

Our query may then test for the existence of facts, along with their attributes

and associations. If the facts exist, the similarity ranking is strengthened; if they

do not exist, the similarity is weakened. Overall, the ranking is expressed as a

percentage of the important facts, attributes, and relationships that a particular

31

method contains with respect to the query. In our notation, we represent this as the

function sim(Queryset, Factbase(Btarget)), defined as follows:

∑
f∈Queryset Factsim(f, Bestmatch(f, Factbase(Btarget), Queryset))

|Queryset|

where Factsim is a function determining a similarity metric in the range 0 ≤

Factsim(f1, f2) ≤ 1, for any individual facts f1 and f2. If the attributes and associ-

ations of a fact, f , are represented by att(f), then we define Factsim as follows:

Factsim(f1, f2) =
|att(f1)

⋂
att(f2)|

|att(f1)|

Method snapshots may contain multiple differences, so discovering a correspon-

dence is necessary to form a query. In particular, we must infer whether any par-

ticular fact in the “after” snapshot is a new fact, a fact that has been changed

from the “before” snapshot, or one that is completely identical to the original. This

inference is inherently imprecise; however, we can attempt to find the best-fitting

matches. We discuss the matching process of the factbase data types and describe

their implementation in turn.

Fact matching Any given fact in method A can be said to “match” a fact in a

method B if A’s fact is of the same type as B’s and the fact in B contains more

of A’s attributes and associations than any other fact in B. The “closeness” of the

match is expressed as a ratio of the number of matched and unmatched attributes

and associations, Factsim.

In our notation, we say that a fact f1 ∈ Factbase(Btarget), matches another fact,

f2 ∈ Queryset, if the following is true:

32

¬∃ f3 ∈ Queryset | Factsim(f1, f3) > Factsim(f1, f2)

Attribute matching An attribute, on the other hand, is said to either match or

fail to match with no values in between. This is done by testing for equivalence on

both the name and value of the attribute. If either of these comparisons fail, the

match is rejected.

In our notation, we say that an attribute a1 matches another attribute, a2, only

when a1 = a2.

Association matching As with attributes, associations either match or fail to

match completely. Unlike attributes, whether or not an association matches another

depends on another fact—the target of that association. For example, if a particular

Reference has a dataFlowsFrom association, we must determine whether the target

of that association is similar enough between the “before” and “after” snapshots to

consider it to be the same relationship. Since associations may form a cyclical graph,

they cannot be followed forever to determine this.

Our prototype implementation overcomes infinite recursion during the association

matching process by calculating a hash value from the association’s target, and

comparing it to the hashes of its potential matches. The hash value is comprised of

common attributes that should give a reasonable indication of whether or not the

associated fact is a match. Specifically, we look at the type of the fact, its name,

its data type (if applicable), and its value. While imperfect, this approximation was

made to improve performance and simplify the debugging process.

An improved implementation would recursively calculate a similarity metric, fol-

lowing associations only a few nodes deep to avoid infinite recursion. Interim metrics

33

could be cached to avoid needless re-calculation, and any association that passes a

pre-defined similarity threshold5, could be considered a match. If the association’s

similarity does not meet the threshold, it would be declared a mismatch.

The original implementation of the Reverb prototype was designed to use the

limited recursion approach; however, without caching previously calculated similar-

ities, performance was sluggish. Additionally, debugging the similarity calculation

process became overly burdensome and the approximation approach was adopted for

our prototype.

In short, we say that an association as1 matches another association as2 if

Factsim(target(as1), target(as2)) ≥ threshold, where threshold is some similarity

threshold, and target(as) is the fact target of the one-way association as.

Once we have defined how facts, attributes, and associations match each other

between versions, we need to correlate the two as accurately as possible. Correctly

identifying and resolving what has changed between two factbases is not always

possible [Berzins, 1986]; however, a best fit can be found for any two sets. We do this

via a “bidding” system in which each fact analyses its candidate matches and sorts

them based on the closest match. If a fact’s preferred candidate is better matched

to another fact, the next choice is considered until all matches have been made.

Orphaned facts are considered additions or deletions depending on which factbase

contains them. All others are considered either identical (i.e., a perfect match) or a

modification (an imperfect, but closest match). A pseudocode algorithm is presented

in Figure 3.9.

5Empirical experimentation would be helpful in defining an appropriate value for such a thresh-
old.

34

for all b | b ∈ bidders do
m← best match for b in candidates
bids← bids + m

end for
for all c | c ∈ candidates do

w ← maximum of bids
if ¬∃ w then

c.status← DELETION
else

if ∃ a | a 3 (c.attributes ∩ w.attributes) ∪ (c.associations ∩ w.associations)
then

c.status←MODIFIED
else

c.status←MATCH
end if
candidates← candidates− c
bids← empty set
for l | l 6= w + l ∈ candidates do

m← best match for b in candidates
bids← bids + m

end for
end if

end for

Figure 3.9: A pseudocode algorithm for discovering additions, deletions, and mod-
ifications between two factbases.

35

Once we have information on which facts are new, changed, and deleted, simple

set arithmetic can be used to determine which should be added to the query.

3.5 Prototype Implementation

To better understand the benefits and drawbacks of our technique for the purposes

of evaluation, we have created Reverb, a prototype implementation. The usage

scenario presented in Section 3.1 provides an example of how our tool is used from

the developer’s perspective. We now discuss the implementation of Reverb in more

detail.

We have implemented Reverb as an Eclipse6 plug-in capable of working on pro-

grams written using the Java language. Although the technique for locating RSCs

is language independent, we chose to work with Java and the Eclipse environment

because of their robust toolsets and personal familiarity with each.

At an abstract level, Reverb can be seen as an entity derived from the Observer

design pattern [Gamma et al., 1993]. Reverb observes changes to the source code as

they are made, and upon request, can present a list of recommended locations based

on those observations.

While a constant observation is necessary for Reverb to function, the observations

are limited in scope. The recommendation process is where the bulk of the code

analysis is done, and the architecture of the plugin is organized around this idea.

Since Reverb is an Eclipse plugin, some of its architectural decisions were influ-

enced by the Eclipse framework; however, unlike most other plugins designed for

6Eclipse is an open source integrated development environment written in Java

36

Eclipse, Reverb is activated immediately after the IDE has initialized. Most other

plugins wait for a user-initiated “lazy” activation, but Reverb needs to begin observ-

ing changes as soon as the workspace is ready.

Observing Changes

As we navigate through a Java project, making additions and changes, Eclipse has

knowledge of the active Java file and caret position at all times. When the user

moves the caret within the text environment, either by typing or making a new

selection, Eclipse reports that change to any registered observer, via the Observer

design pattern [Gamma et al., 1993]. Reverb registers itself as such an observer,

receiving reports of any text selection changes.

When a selection change is reported, Reverb checks to determine in which method

the text caret is contained. If the developer has moved the caret into a method, then

a snapshot of that method is saved to memory in the form of a subtree of Eclipse’s

parse tree. Since developers may be working on several classes at the same time

and task-switch between them, several snapshots are tracked at the same time. We

could, for example, enter a new method M1 in class A, begin making some changes,

switch to class B and edit a different method M2, then re-enter class A and resume

editing M1. In such a situation, Reverb would only save one initial snapshot for M1,

which is the first time we entered it. A replacement snapshot would not be taken

unless we were to begin editing another method within the same class.

The source code may or may not be syntactically correct during active devel-

opment. For this reason, Reverb opts to ignore selection changes that cannot be

determined to be contained inside a method and fundamental changes to a method’s

37

signature are not considered as intra-method changes. While work exists to detect

changes to identifiers and method signatures [Malpohl et al., 2000; Kim et al., 2005],

an analysis based on line numbers could also overcome these limitations, due to the

immediacy of the change.

3.5.1 Fact Selection

Facts are extracted from partial ASTs that were either saved during the change

observation process described in Section 3.5 or during the query process described

above. The extraction is done using the Visitor design pattern [Gamma et al., 1993].

As the extractor visits each node in the partial AST, it takes note of information

deemed to be of interest, expressed as the facts, attributes, and associations described

in Section 3.2. The fact types used by Reverb are identical to those listed in Table

3.1.

As Reverb extracts the facts from a method, it assigns a unique identifier to each

one. The identifier is assembled using a combination of the fact type and the order

it was encountered. It is used internally to help compare and distinguish facts, but

is also presented to the user in the Factbase Comparison dialog and Query Refiner

dialog (see Section 3.5.2).

In our implementation, fact associations are represented as a standard attribute

which has another fact as its value. It should be noted however that, during the

similarity ranking process, Reverb treats these attributes as the abstract associations

described in Section 3.2.

3.5.2 Manual Query Refinement

38

At some point, we may encounter a result that does not exactly fit the RSC we are

trying to address. In this situation, a few concepts for improving and understand-

ing the results are available. First, we can view a rationale of why the result was

chosen. This is done by clicking the factbase comparison icon in the Results View,

which opens up the Factbase Comparison window (see Figure 3.10). The window

contains a tree structure containing the query’s Facts and Attributes present in that

particular method7. If there is a green dot beside a particular fact, attribute, or

association, then an important fact was found in the method. If there is a red dot,

the associated fact, attribute, or association was designated as important, but was

not found. If there is a grey dot, that means that particular fact, attribute, or asso-

ciation is considered unimportant from the perspective of the query, and ignored in

the calculation.

There is a possibility that we may disagree with the facts that were determined

to be important during the query formation. In such a situation, we may manually

specify which facts are most important to the task at hand. This is done through the

Refine Query Dialog (see Figure 3.11), which appears after clicking the Refine Query

icon on the Results View. This dialog shows every fact, association, and attribute

that was extracted from the original version of the changed method. Each element is

written beside a checkbox that can be clicked to toggle its important/unimportant

state. By toggling the importance values, we are able to specify which information is

used in the similarity calculation process. Once the dialog is committed, the project

code will be re-searched and the Results View will be updated with the newly ranked

locations.

7We sometimes refer to these as “important” facts.

39

Figure 3.10: The Factbase Comparison window. This allows the developer to see
the rationale for a particular method’s ranking in the results. The facts, attributes,
and associations shown in this diagram are explained in greater detail in Section 3.2.

3.6 Summary

To query for similar, but non-identical methods, we use a factbase data model based

on facts, attributes, and associations. Fact represent declarations of the existence of

one of four types: methods, references, method invocations, and control flow graph

nodes. Attributes represent data associated with each of the fact types and can occur

in any quantity. Associations are one-way relationships between facts.

A query can be formed by selecting the facts that have been deleted or modified

from an AST snapshot taken before and after a modification. A similarity metric

is calculated based on the ratio of query facts present in any particular fact base.

We search for similar locations based on this prototypical change by calculating the

similarity metric for all methods in the project and sorting them based on that

40

Figure 3.11: The Refine Query dialog. This allows the developer to modify which
information is deemed important when querying other methods in the project. A
checkmark beside a particular fact, attribute, or association implies that it is impor-
tant.

41

metric. We’ve implemented the technique in an Eclipse plug-in called Reverb.

Chapter 4

Evaluation

To examine the effectiveness of Reverb, we must develop a means by which the results

can be compared to other approaches. We evaluate performance primarily on the

precision and recall of the results.

The focus of Reverb is to return relevant target locations for an RSC, so we

compare the returned locations to those of the actual RSC targets. We evaluate the

accuracy of our approach in locating RSCs performed on two development scenarios

involving popular, open-source software systems. In the first scenario (Section 4.1),

we attempt to evolve Apache Struts 1.1, a web application framework, to consistently

use a logging framework instead of guarded print statements. In the second scenario

(Section 4.2), we attempt to evolve JHotDraw 5.4, a diagramming tool and frame-

work, to use Java 5’s newly introduced syntax for iterating through collections. We

attempt to complete each of these scenarios using four approaches: lexical search,

syntactic search (using Eclipse’s built-in search features), a clone detector, and the

heuristic search technique proposed in this paper. The results are presented in their

respective sections.

To evaluate the performance of clone detection in supporting RSCs, we used

CCFinderX [Kamiya et al., 2002]. CCFinderX is a hybrid approach to clone detection

using token-based comparisons and language-specific filtering. The tool was selected

for its availability and optimized performance.

42

43

4.1 Moving to a Logger Framework

Apache Struts is a popular open-source framework for creating web applications in

Java. While browsing the source files, it was discovered that simple “debug” flags,

as described in Section 2, are being utilized in parts of the source distribution. It

is unknown to what extent these flags are used, but since a logging framework is

leveraged elsewhere in the codebase, we wish to evolve the source, eliminating all

“debug” flags in favour of that framework.

Lexical Search Results Since the debug output that we are interested in finding

must occur within a conditional test for the “debug” flag, we performed a lexical

search on the word “debug” and manually inspected each of the reported results.1

234 results were returned, 20 of which we deemed to be true positives. These 20

results occurred within 6 methods.

We describe these results more concisely by their precision and recall. The for-

mulas for calculating these metrics are shown below:

precision =
true-positives

total-positives

recall =
true-positives

total-actual

For the lexical search, this corresponds to a recall of 100%, but a precision of

only 9%.

1We opted to search for the term “debug” as opposed to “if (debug)” because the former
is a common term between both, and we wished to find relevant locations regardless of bracket
placement and whitespace.

44

Syntactic Search Results To perform a syntactic search, we selected an occur-

rence of the “debug” flag and instructed the Eclipse IDE to search for other locations

where this same flag is referenced. Eclipse returned 3 results, and only 2 of them

were legitimate RSC target locations. This corresponds to a recall of 10%, and a

precision of 66% relative to the lexical results. The poor syntactic search results can

be explained by Struts’s use of fields instead of a shared, globally available variable

to define the debug flag.

Clone Detector Results To obtain results from CCFinderX, we instructed the

tool to find code clones within the Apache Struts project and navigated to a loca-

tion that we knew to contain a relevant guarded print statement. Two clones were

associated with our known location, and both were indeed relevant to our RSC. This

corresponds to a precision of 100%, but a recall of 10%.

Since we are also interested in potentially helpful clones that were not detected

as being associated with our known location, we also investigated the performance

relative to the complete set of 489 detected clones. Of these, 2 clone sets were related

to our RSC, representing 4 of the the actual change target locations. This yields a

precision of 0.004% with a recall of 25%.

Reverb Results We invoked Reverb on an example change made to one of the

RSC target locations. Specifically, we changed one of the two guarded output state-

ments located in the DefinitionCatalog constructor. After the invocation, the

Results View opened, showing all methods in the Apache Struts project, sorted by

their similarity metrics to the example change. We did not launch the Query Refiner

to adjust the default query.

45

Unlike the previous techniques, Reverb returns a list of all methods, sorted by

their similarity to the situation at hand. Since a single precision and recall metric

cannot express this, we present a truncated graph of Reverb’s precision and recall

metrics as a function of the number of results returned in the order they were pre-

sented (Figure 4.1). The formulas used for these metrics are as follows:

precision(k) =
true-positives(k)

k

recall(k) =
true-positives(k)

total-actual

The variable k in these equations represents the ordered set of results. To graph

these formulas, starting at the first result, we increment k until the entire set is

exhausted. This graphing technique represents how the developer is intended to

view the results. One starts at the first result and works steadily through the rest

until the frequency of false positives becomes too great. When studying the graphs

of Reverb’s result, we are looking for a large set of true positives clustered at the

front of the order.

The graph of a best-case scenario would be an uninterrupted cluster of true-

positives from 1 to n, and false-positives from n+1 to m, the last result. An occasional

false positive interspersed through the relevant results is still considered very good.

The worst-case scenario would be an uninterrupted cluster of false-positives from 1

to n, and true-positives from n+1 to m. A random order of true- and false-positives

would be almost as bad.

As shown in Figure 4.1, Reverb returned perfect results for this example. The

46

0

0.2

0.4

0.6

0.8

1.0

1 2 3 4 5 6 7 8 9 10

P
re

c
is

io
n
 o

r
 R

e
c
a
ll

Recommendations Viewed

Precision

Recall

Figure 4.1: Truncated results for the debug example

recall percentage increases with a precision of 100%, until all results have been re-

turned. The precision then drops exponentially as k increments to include all of the

6590 methods, most of which contain negligible similarity metrics. These results are

excellent, as they match our best-case scenario.

To better understand Reverb’s precision and recall for this example, we also graph

these figures with respect to the similarity metrics assigned by Reverb (Figure 4.2).

The graph results show that, even though the order of the results were perfect, there

were still a few false positives ranked with the same similarity metric. A graph of the

precision versus the recall (Figure 4.3) also reveals the effect of the false positives,

as a perfect graph would remain a horizontal line at the 1.0 value without dipping

at the end.

These results are substantially better than the traditional approaches evaluated.

To demonstrate this more clearly, we graph the precision and recall of the lexical

47

0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

o
n
 o

r
R

ec
al

l

Similarity

Precision
Recall

0 1.00.80.60.40.2

Debug Query
Precision and Recall Versus Similarity

Figure 4.2: Precision and recall versus Similarity for Debug Example

0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

o
n

Recall

Reverb Debug
Recall vs. Precision

0 1.00.80.60.40.2

Figure 4.3: Precision versus recall for the debug example

48

0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

o
n
 o

r
R

ec
al

l

Recommendations Viewed

Precision
Recall

0 2331861399245

Debug Query (Lexical Results)

Figure 4.4: Precision and recall for Lexical Search

results2 as a function of the order the results were returned (Figure 4.4). Comparing

this to Reverb’s results (Figure 4.1), we see that the lexical search returned almost a

worst-case scenario. Since lexical search results are not returned in any meaningful

order (Eclipse sorts them alphabetically based on the filename in which they occur,

and this case had most hits in a low alphabetical file), it is important to rank results

based on their relevance to the task at hand.

4.2 Migrating to For-Each Loops

Figure 4.5 shows how a collection iteration in the basicMoveBy(...) method of

JHotDraw’s PolyLineFigure class could, potentially, be updated to take advantage

of the new for-each syntax.

2We did not repeat this additional comparison for the syntactic search and clone detector results
because the former focuses on returning a few, exact results, and the latter is presented in a two
dimensional scatter plot, without a concept of order.

49

public void basicMoveBy(int dx, int dy){
Iterator iter = points();
while(iter.hasNext()) {

((Point) iter .next()).
translate (dx,dy);

}
}

public void basicMoveBy(int dx, int dy){
for(Point p : points())

p. translate (dx,dy)
}

Figure 4.5: Possible collection iteration migration in JHotDraw

Like our previous example, once initial preparations are made, updating any

single loop to use the new “for each” syntax is relatively well-defined. However,

this change must be repeated throughout the codebase in order to complete the

evolutionary step.

We wanted to locate and transform all possible collection iterations. With this

in mind, we split the task into two queries: finding RSC target locations for object-

based loop traversals (using iterator, enumeration, or other traversal classes), and

finding RSC target locations for integer-based index loop traversals. We evaluated

these two queries with respect to the same approaches as before.

Lexical Search Results To search for object-based traversals, we decided to

search for the keyword “while” and manually investigate each of the results to deter-

mine which were true positives. This search fared well, returning 190 matches, with

138 of them representing legitimate RSC target locations at the method granularity.

50

For the subset of migratable iteration locations utilizing object-based traversals, this

represents a recall of 98% with a precision of 75%.

For our second query, we searched for the keyword “for”, since there is no obvi-

ous lexical element that connects all index-based iterations. Eclipse returned 3977

results, but only 91 of these occurred within legitimate RSC target methods. For

the subset of migratable iteration locations utilizing integer-based index loops, this

represents a recall rate of 100%, but a precision of only 2%.

Syntactic Search Results To use a syntactic search to find object-based traver-

sals, we opted to search for accesses to references of the type Iterator. Eclipse

returned 78 results within a total of 73 methods. 38 of these methods contained le-

gitimate migratable RSC targets. This corresponds to a recall of 51% and a precision

of 52%.

The second query did not lend itself well to a syntactic search. The keyword “for”

is the most common lexical similarity when using an integer-based index traversal,

but the Eclipse syntactic search does not allow the specification of keywords. Since

there was no particular field, method name, or other non-keyword string suitable for

performing this query, we determined this query to be too complex for a syntactic

search and opted to forego this evaluation step.

Clone Detector Results Using CCFinderX, we processed the JHotDraw code-

base for clones and navigated to a point known to contain an object-based traversal.

A single clone was detected for our known location, and it was a relevant change

location. This corresponds to a recall of 1% and a precision of 100%.

As using a seed location did not result in adequate performance, we also investi-

51

gated the performance relative to the complete set of 1123 detected clones. Of these,

13 clone sets were related to our RSC, representing 25 of the actual change target

locations. This corresponds to a recall of 50% and a precision of 2%.

Using the same technique to search for index-based traversals, CCFinder did not

find any clones for our known location. However, of the 1123 detected clones, we

found 38 clone sets related to our RSC representing 91 of the actual change target

locations. This yielded a recall of 65% and a precision of 3%.

Reverb Results We started this scenario, as in the previous example, by invoking

Reverb on an example change. We transformed, at random, a location within JHot-

Draw that uses an Iterator class and a while loop to traverse over a collection to

use the new for-each syntax instead. Although our example used an Iterator class,

we were interested in all object-based traversals, including Enumeration traversals.

The Query Refiner was launched to remove any facts that were part of the example

change, but not generally relevant to our RSC3. Using the same graphing technique

as before, we plot the results with respect to the results in the order they were

returned. Figure 4.6 represents the first 500 results graphed.

As can be seen from the graph, Reverb performs very well. By the 96th result,

Reverb had already reached 95% recall with a precision of 93%. 100% recall, however,

is not reached until the 3630th result due to a bug in the way Reverb handles

anonymous inner classes. Ignoring outliers due to that bug4, Reverb reaches 100%

recall by the 120th result at a precision of 98%.

3We investigate the difference between the refined and unrefined query in Section 4.3.
4All of the graphs we present here reflect the unfiltered results, affected by the anonymous inner

class bug.

52

0

0.2

0.4

0.6

0.8

1.0

P
re

c
is

io
n
 o

r
 R

e
c
a
ll

Recommendations Viewed

Precision

Recall

0 500400300200100

Figure 4.6: Results for object-based iteration migration

Figure 4.7 depicts the precision and recall versus the similarity metric for the

object-based iteration. Since the recall is high for the strong similarity metrics (0.8

and above), the precision remains high until similarity drops below 0.6, when large

numbers of false positives begin to appear. Graphing the precision versus the recall

(Figure 4.8) shows that the precision remain strong as the recall value increases. The

sudden drop in precision at the end of the graph marks the value at which the inner

class outliers are reached.

For our second query, we transformed, at random, a location within JHotDraw

that uses an index-based for-loop traversal over a collection and graph the results.

Figure 4.9 represents the first 500 results.

Although the results are not as strong as before, Reverb still performs very well.

By the 103rd result (out of 4,889), Reverb has reached a recall of 95%. Ignoring the

outliers introduced by the anonymous inner class bug, this point signifies the 100%

53

0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

o
n
 o

r
R

ec
al

l

Similarity

Precision
Recall

0 1.00.80.60.40.2

Object-Based Query
Precision and Recall Versus Similarity

Figure 4.7: Precision and recall versus similarity for object-based iteration

0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

o
n

Recall

Reverb Object-Based Iteration
Recall vs. Precision

0 1.00.80.60.40.2

Figure 4.8: Precision versus recall for object-based iteration

54

0

0.2

0.4

0.6

0.8

1.0

P
re

c
is

io
n
 o

r
 R

e
c
a
ll

Recommendations Viewed

Precision

Recall

0 500400300200100

Figure 4.9: Results for the index-based iteration migration

recall point. The precision is initially very high (above 90% for the first 10 results),

but drops between the 18th and 41st result. By the time the precision permanently

drops below 50%, a recall rate of 88% has been achieved.

Graphing the precision and recall versus the similarity (Figure 4.10) shows that

the precision and recall are quite high for the highest similarity levels before dropping.

However, graphing the precision versus the recall (Figure 4.11) shows the effects of

two groups of false positives, one within the first few results, and another around

the 0.3 recall point. Aside from these pockets, the precision and recall rate remains

relatively good until the anonymous inner class outliers appear as the recall rate

approaches 1.0.

4.3 Evaluating The Fact Selection Process

55

0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

o
n
 o

r
R

ec
al

l

Similarity

Precision
Recall

0 1.00.80.60.40.2

Index-Based Query
Precision and Recall Versus Similarity

Figure 4.10: Precision and recall versus similarity for index-based iteration

0

0.2

0.4

0.6

0.8

1.0

P
re

c
is

io
n

Recall

Reverb Index-Based Iteration

Recall vs. Precision

0 1.00.80.60.40.2

Figure 4.11: Precision versus recall for index-based iteration

56

Reverb selects which facts are designated as query facts through a simple set subtrac-

tion process. Any facts that are removed or modified after the change are selected

for query. The Query Refiner allows developers to manually change the facts selected

for query. In Section 4.1, the Query Refiner was not used to improve the results. In

Section 4.2, the Query Refiner was used to achieve better results. We now evaluate

how the fact selection and refinement processes affected those query results.

4.3.1 Moving to a Logger Framework

Through Reverb’s fact selection process, an optimal query was achieved by default

for the logging framework RSC demonstrated in Section 4.1. The query facts were

selected based on the differences between the “before” and “after” snapshots of the

example method provided. To understand how Reverb would perform without this

selection process, we repeated the same task with all facts selected for query instead

of the reduced subset based on the change. Figure 4.12 presents the results of this

query, graphed using the same precision and recall metrics.

As can be seen from the graph, the query results without Reverb’s fact selection

process is not impressive. 100% recall is not reached until the 69th result, and

precision drops below 50% on the second result at a precision of only 16%.

4.3.2 Migrating to a for-each loop

For the loop migration examples, the Query Refiner was used to help improve the

query results. While investigating why human intelligence was able to improve upon

the initial results is beyond the focus of this thesis, a simple comparison could help

understand the depth of such a gap. Figure 4.13 depicts the results for the index-

57

0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

o
n
 o

r
R

ec
al

l

Recommendations Viewed

Precision
Recall

0 10080604020

Debug Query (All Facts)

0

0.2

0.4

0.6

0.8

1.0

P
re

c
is

io
n
 o

r
 R

e
c
a
ll

Recommendations Viewed

Precision

Recall

0 10080604020

Figure 4.12: Logging framework results with (above) and without (below) auto-
mated fact selection.

58

and object-based loop examples presented in Section 4.2.

As can be seen from the default object-based query graph, the results benefitted

from the manual Query Refinement. Outliers were reduced, as the 95% recall rate was

not achieved until well after the 500th result without some manual query refinement.

Precision was also improved with the refinement.

The difference between the default and manually refined index-based query is not

as large as that for the object-based query, but Reverb’s results are still noticeably

better after some manual refinement. Again, outliers were reduced as a recall of

90% was reached only by the 308th result without refinement, versus the 61st result

with refinement. The pocket of false hits was also shortened, improving the overall

precision.

4.4 Summary

Using the Reverb tool, we performed three evaluations based on two RSCs. In the

first example, we attempted to migrate Apache Struts to use a logging framework

consistently, removing guarded debug statements. Reverb achieved optimal search

results without query refinement, though some false positives were given the same

similarity metric as some true positives. For the second and third example, we

attempted to migrate JHotDraw to use Java 5’s for-each syntax. Reverb performed

very well for both object-based and index-based iterations, especially after some

manual query refinement.

The gap between Reverb’s fact selection process and a process using human

intelligence was relatively narrow, but still noticeable. In cases where optimal results

59

0

0.2

0.4

0.6

0.8

1.0

P
re

c
is

io
n
 o

r
 R

e
c
a
ll

Recommendations Viewed

Precision

Recall

0 500400300200100

0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

o
n
 o

r
R

ec
al

l

Recommendations Viewed

Precision
Recall

0 500400300200100

While-Loop Query (Default)

Figure 4.13: Object-based iteration migration results with (above) and without
(below) query refinement

60

0

0.2

0.4

0.6

0.8

1.0

P
re

c
is

io
n
 o

r
 R

e
c
a
ll

Recommendations Viewed

Precision

Recall

0 500400300200100

0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

o
n
 o

r
R

ec
al

l

Recommendations Viewed

Precision
Recall

0 500400300200100

For Loop Query (Default)

Figure 4.14: Index-based iteration migration results with (above) and without
(below) query refinement

61

were not achieved by default, manual refinement helped improve the results.

Chapter 5

Discussion

In the previous chapters we described the problem with RSCs and showed how

our approach can help find relevant RSC target locations within a codebase better

than traditional approaches for the scenarios evaluated, both in terms of developer

effort and quality of results. We now discuss possible limitations and pitfalls of our

approach, alternate uses, and possibilities for future extension.

5.1 Semantic Similarity

While lexical similarity can be expressed in terms of character patterns, the same

cannot be said for semantic similarity. For a segment of code to be labeled “seman-

tically similar,” it need not perform the same function or have the same result, and

it is certainly not required to have the same same lexical or syntactic structure1.

Semantic similarity can have many interpretations, and to adequately solve the

RSC problem, the definition of such similarity may depend on what the developer is

trying to accomplish. To put this in the form of an example, we observe the two lines

of code in Figure 5.1 and compare them to those in Figure 5.2. Depending on the

developer’s goals, similarity can be assumed or dismissed in each of these scenarios.

We consider the idea that the developer does find the examples in the figures

1In this thesis, we define lexical matches as having a one-to-one correspondence in the character
data. Syntactic matches may contain differences in variable names and literal values, but otherwise
has identical keywords and symbols.

62

63

System.out.print("Hello, World!");
System.err.print("Hello, World!");

Figure 5.1: A pair of possibly similar code segments

System.out.print("Hello, World!");

String a = "Hello, World!";
System.out.print(a);

Figure 5.2: A second pair of possibly similar code segments

above as being similar. Each of the examples could be considered similar because

the lexical string “Hello, World!” is being output, regardless of whether the output

is sent to System.out or System.err, or whether the output is passed as a String

literal or as a variable that had been assigned that value. On the other hand, if the

developer considers the examples in Figure 5.1 to be similar, but not those in Figure

5.2, then perhaps we conclude that the RSC involves outputting “Hello, World!”

directly, without intermediate variable storage. Likewise, if the examples in Figure

5.2 are considered similar, and not those in Figure 5.1, then we can conclude that

outputting “Hello, World!” to System.out is an important aspect of the RSC. If none

of them are similar, then the developer may have other intentions in mind entirely.

Since RSCs are difficult to locate because of their semantic structure and not

necessarily their syntax, we must develop a technique whereby semantic similarity is

used to locate RSC targets. However, we cannot make too many assumptions about

what constitutes this similarity, which is why we provide the developer with tools to

adjust our idea of what similarity is in each situation.

64

5.2 Granularity and Inter-Method Relationships

Reverb observes changes and returns results at the method-level granularity. While

we argue that small-scale changes normally exist within the confines of a single

method, this is not always the case. There are scenarios where a relatively small

change target may be defined by relationships that cross method boundaries.

An example of an RSC that may include method-spanning Facts is presented in

Figure 5.3. When the SWT user interface framework was updated to version 3.0,

internal changes were made such that a method, setLayoutData, would throw an

exception if the layout being used of the RowLayout class. This was not the case in

previous versions, and the SWT documentation suggests that developers search for

all locations where setLayoutData is being called on objects being positioned with

a RowLayout layout type.

As can be seen in Figure 5.3, it’s possible that the information needed to locate

RSC targets of this nature can be scattered across methods; it would be impossible

for our approach to find these locations.

While our inter-method tracking limitation is problematic for these situations,

implementing an inter-method RSC target finder would have been more compli-

cated. Since Reverb is a research prototype, it was decided to test the concept

on intra-method relationships to simplify the implementation and make the results

easier to analyze. In addition to reducing the complexity of the query, selecting a lim-

ited, but well-defined granularity allows us to define changes by observing developer

navigation.

65

/∗ Method 1 ∗/
public void interMethodExample() {

Display display = new Display();
Shell shell = new Shell(display);

this.prepareShell(shell);

// Now we add an object with LayoutData
Button myButton = new Button(shell, SWT.PUSH);
myButton.setText("Click Me");
myButton.setLayoutData(new RowData(50, 40));

}

/∗ Method 2 ∗/
pubic void prepareShell(Shell shell) {

shell .setLayout(new RowLayout());
}

Figure 5.3: An RSC target location that contains inter-method relationships. It
would be impossible for our approach to locate this situation because it only tracks
intra-method relationships.

66

5.3 Performing an Example Change

For the examples evaluated in this paper, we knew of at least one RSC target location

for each scenario that we used to demonstrate an example change for Reverb. How-

ever, there may be situations where the developer would not know of such locations

straight away. For example, if a developer learns of an API method deprecation, this

could trigger an RSC where the launch point is unknown.

In this situation, we recommend that the developer create a temporary method

demonstrating the state of a method before the change. The change could be demon-

strated to Reverb using this temporary method, and locations elsewhere in the

project’s source where the same change ought to be made should be returned. If

the results are ranked with a very low similarity, it is possible that the RSC is not

applicable for that project.

5.4 Defining Change Snapshot Points

Navigation is tracked for each java file allowing the developer to task-switch to other

classes and return without affecting the initial “before” snapshot for that class. This

“before” snapshot will not be replaced with a new one unless the developer navigates

to another method within the same file, signaling that a new small-scale change

has started. While this allows for ad-hoc usage without sacrificing task switching

between other classes, one can conceive of scenarios where this behaviour would

not be appropriate. In particular, if the developer begins a change, task-switches

within the same class, and returns to completing the original change, then only the

post-task-switch portion of the change will be detected by Reverb.

67

To avoid such situations, “begin observation” and “end observation” commands

could be added to the Reverb user interface. These commands would override the

automated behavior and allow the developer to define the change snapshots manually.

While helpful, this functionality does not contribute to the precision and recall of

our evaluation and was not added to our prototype.

5.5 Fact selection

During the development of Reverb, we experimented with many different fact and

relationship types. The ones that yielded the most relevant results were incorporated

into the tool.

Determining whether or not a fact contributes to a “relevant result” depends on

the RSC being addressed. Unfortunately, erring on the side of including as many

facts as possible was not a solid approach. Relevant Facts would become buried

in a wealth of information, and it became increasingly difficult to identify which

Facts were important from a similarity perspective. In particular, certain operators,

meta information about where references are defined, and special emphasis on call

chains were found to provide too much noise. Also, some of this information, such

as references involved in call chains, was able to be retrieved implicitly through the

existence of other facts, attributes, and associations.

While a quantitative analysis of which facts, attributes, and associations provide

the best average results would require too much time for this study, we are confident

based on qualitative evidence that the factbase selections perform reasonably well to

support the thesis of this dissertation.

68

5.6 Ranking similarity

Our approach calculates similarity using straightforward algorithms for the purpose

of keeping evaluation simple. In particular, “important” facts are selected through

basic set arithmetic. Facts that are in the initial snapshot that are not in the second

are automatically selected as being “important.” Also, changes in attributes from

the initial to the final snapshot are noted as being important.

Using set arithmetic generally produces good results, but since the queries gen-

erally improved after developer refinement, there are many possibilities for improve-

ment in selecting important facts. One particular idea that was experimented with

was the concept of using a scalar value as an importance weighting to various fact

types. Since RSCs do not typically involve heavy dependence on lexical properties,

attributes such as hasName could be given a small weight, whereas dataflow attributes

such as flowsFrom could be given a large weight. While experiments showed that

such a ranking is possible, it was deemed unnecessarily complicated for an initial

evaluation of the concept. It also introduced additional problems such as how to

empirically decide on an appropriate weighting for each fact and attribute.

An additional problem with ranking is the depth at which relationships are ad-

dressed. Since relationships between facts form a graph, determining which facts are

matched by relationship is a recursive process with an arbitrary threshold as to what

constitutes a “match.”

For the purposes of our prototype tool, matches in fact relationships were decided

by a pre-calculated meta value. The meta-value is an identifier formed from the most

important Attributes for a particular fact based on empirical tests. This currently

69

involves the isType, hasValue, hasName, and isLoop attributes, as well as the actual

type of the fact itself. These values together form a threshold identifier that is not

necessarily unique, but usually turns out to be unique for any particular method.

This process is quick and gives results that perform well for the amount of resources

required to do the computation.

The meta value calculation, however, is not error-proof. A better implementation

would follow relationships as deeply as possible. Initial algortithms used in the

development of Reverb used such approaches, but were dropped in the interest of

clarity for evalution.

Another shortcoming in the similarity ranking algorithm is that queries are

formed using simple AND boolean logic. That is, the existence of a particular fact,

attribute, or association strengthens the similarity, and the absence of those facts,

attributes, and associations weakens it. In reality, there are situations where OR

and NOT boolean logic could improve the query.

In our first motivational example, if we invoked Reverb on a codebase that already

had some of the new “for each” loops converted, Reverb would probably include

many of these in the results. It would be therefore desirable to indicate that it is

important for the CFG Fact to not have a isType: forEachLoop attribute, but

still have an isLoop: True attribute. This is currently not possible in Reverb’s

prototype implementation.

5.7 Performance

70

Reverb took approximately three minutes for each of the scenarios presented in

Chapter 4 on a MacBook with 2GHz Intel Core Duo processor and 1 GB of RAM.

As Reverb has not been optimized with respect to execution time or memory usage,

a more thorough performance evaluation should be conducted once optimizations

have been implemented beyond our prototypical implementation.

5.8 User refinement

Reverb provides the developer with a query refiner to help give extra knowledge

about which facts, attributes, and associations are deemed important. While it is

useful to present this information to the developer in its current implementation, we

can use even simpler information from the developer to derive additional facts.

This could be implemented by a simple “yes” or “no” question directed at the

developer for each result returned: “Is this result correct?” If the developer indicates

that no, the result is not correct, additional boolean logic could be applied to refine

the query. We can discover what is different about the inaccurate result that could

be removed from the query.

5.9 Summary

While we believe our technique adequately validates the premise of this thesis, there

are still pitfalls and shortcomings that could stand to be addressed. The method-

level granularity leaves out a subset of RSCs that might otherwise be addressed

and results are presented at a higher granularity than is actually represented in the

source code. Fact selection could stand to use some qualitative analysis to select the

71

best general cases. Similarity ranking is currently binary which treats all Facts and

Attributes as having the same importance, even though some may be more relevant

than others to the developer. Relationships between Facts are calculated based on

pre-calculated meta information that doesn’t follow multiple levels of relationships

explicitly, and more advanced boolean logic is not applied when forming a query.

Finally, user refinement is more complicated than it has to be, since simple “yes” or

“no” questions could be asked to the developer.

Chapter 6

Related Work

The task of locating relevant targets in source code has mostly been limited to query

languages and lexical pattern matching. Nevertheless, there is work in the academic

community to make searching source code easier and allow for less dependence on

lexical similarity. In this chapter, we discuss these ideas and how they relate to RSCs

and our technique to discover them.

We begin by considering clone detection techniques and how our technique re-

lates to them in Section 6.1. Plagarism detection (Section 6.2) attempts to discover

code locations that have been deliberately altered from their original incarnations.

Refactoring, an ad hoc approach to program modification, is discussed in Section

6.3. Sections 6.4 and 6.5 outlines exact and approximate query techniques that may

be used to locate similar code locations. Section 6.6 describes work done to corre-

late changed source code. Programming by example (Section 6.7) shares our goal of

automating repetitive tasks through demonstration, rather than explicit instruction.

Finally, we discuss other related works in Section 6.8.

6.1 Clone Detection

The most obvious approaches that address problems similar to our motivational

scenario are clone detection techniques. Clone detection is geared towards finding

duplicate or near-duplicate segments of code, typically arisen from copy-and-paste

72

73

programming practices [Lange and Moher, 1989]. Unless such redundancies are de-

tected and eliminated, a necessity to change multiple code segments can arise [Geiger

et al., 2006].

There is disagreement in the research community as to what constitutes a clone

[Koschke, 2007] and there has been more than one attempt to classify the concept

[Balazinska et al., 1999; Kapser and Godfrey, 2003]; however, much work is geared

toward discovering locations that may have lexical differences in identifiers or type

changes, but would otherwise be identical.

The simplest form of clone detection can be performed through line-by-line match-

ing algorithms [Baker, 1992] or string comparisons [Johnson, 1994]; however, interest

has been focused on more efficient techniques, or those that allow for the detection

of clones regardless of identifiers, whitespace, and other simple differences.

Baker [1995] has developed a technique using a suffix-tree algorithm [Gusfield,

1997] to compare entire tokens, without introducing syntax into the comparison.

Kamiya et al. [2002] propose a hybrid approach based on Baker’s token comparison

technique and lightweight, language-specific filtering rules.

Baxter et al. [1998] promotes the comparison of abstract syntax trees to detect

subtree matches within a code base. Although specifics of the process are not de-

scribed, only exact or near-miss clones are claimed to be supported. This process is

similar to that employed by DECKARD [Jiang et al., 2007], which additionally in-

troduces characteristic vectors to represent abstract structural information. Coogle

(Code Google) [Sager et al., 2006] also detects similar code by tree-matching on Java

classes, but for the purposes of example finding.

Developers intending to address bugs introduced by incorrect copy-and-modify

74

operations may also benefit from clone detection approaches [Li et al., 2006]. Kon-

togiannis et al. [1996] suggest pattern matching to help developers discover clones to

better understand and maintain legacy software systems. Duala-Ekoko and Robillard

[2007] propose clone region descriptors to track code clones between software versions

and notify developers maintaining the software when clones are being modified.

Clone detection approaches focus primarily on discovering large segments of code

without much variation. The problem we address may involve as little as a single line

of code and contain several syntactic or structural differences. More fundamentally,

valid assumptions in the context of clone detection as to the provenance of clones do

not hold in our context.

6.2 Plagiarism Detection

Detecting the plagiarism of computer code can be considered as a branch of clone

detection, with an important distinction: Plagiarism, unlike code clones, is often

camouflaged with deliberate changes to the code, making plagiarized code segments

harder to identify. This requires a broader definition of similarity, sharing some goals

with our approach.

Prechelt et al. [2000] aim to detect student plagiarism in Java code through token

analysis of syntactic elements. This approach does not consider semantic information

about the code, discarding identifiers, data types, and other information in favour

of a simple analysis of specified keywords and symbols. Similarly, Jankowitz [1988]

constructs program templates for Pascal programs based on syntactic elements, while

ignoring most semantic elements.

75

Unlike our approach, code plagiarism detection techniques are geared toward

structural similarity rather than semantic similarity. Since student assignments in-

herently bear a semantic similarity even when not directly plagiarized, plagiarism

detection purposefully avoids detecting the type of similarities that are beneficial to

RSC target location.

6.3 Refactoring

Refactoring [Opdyke, 1992; Griswold and Notkin, 1993; Tokuda and Batory, 1999;

Fowler, 2002] involves the meaning-preserving transformation of code, facilitating

a particular change. These transformations, like those required to complete RSCs,

often occur in an unknown number of locations within a codebase. Examples of

refactorings include renaming an indentifier, adding a parameter to a method, and

moving a method up a class hierarchy.

While many refactoring tools do not focus on changes on the small-scale, a few

do, such as local variable renaming utilities. Such utilities work on sufficiently well-

defined problems based on invariable knowledge about syntax, allowing them to

guarantee correctness and completeness of the transformation. Refactoring empha-

sizes this behaviour preservation and correctness. Opdyke [1992] defines this in terms

of pre- and post-conditions; any input values must result in the same output values

before and after the transformation. A more general or inexact problem requiring a

notion of similarity is not well-suited for refactoring.

The for-loop migration problem described in our motivational chapter is an ex-

ample of a transformation with behaviour preservation; however, the problem is not

76

solved by available refactoring tools. Object-based iterations—particularly custom

classes not based on any standard interface—require knowledge about the seman-

tics of the iteration methods before they can be transformed. Reverb observes the

developer to obtain some of this knowledge and assign similarities based on the ob-

servation. A generalized refactoring tool could not rely on this information being

available.

6.4 Exact Search Approaches

There exists much work in the research community to explicitly query for patterns

in source code relevant to developer tasks.

JQuery [Janzen and Volder, 2003] is a query language for browsing source code

within the Eclipse development environment. It works by automatically populat-

ing a rule-based logic processor with observations extracted from a project’s source

code. The developer is able to query the logic processor using a Prolog-like syntax,

with JQuery facilitating the correlation between the returned results and the actual

codebase. Conceivably, one could locate certain well-defined RSC targets by building

queries using JQuery; however, doing so places significant cognitive burden on the

developer to specify a sufficiently broad query to capture all desired locations while

being sufficiently narrow to avoid capturing too many undesired locations.

CrocoPat [Beyer, 2006] uses relational programming to analyze software system

architecture and discover graph patterns related to structural problems, design pat-

terns, and code clones. Grok [Holt, 1999] is a relational calculator usually populated

with facts and relationships extracted from large software systems. Software facts

77

manipulated with grok are suitable for extracting architecture diagrams, and other

reverse engineering tasks. Like JQuery, both of these techniques are based on rule-

based logic processors to derive answers to queries and can relate those answers with

source code locations.

TXL [Cordy, 2006] is a transformation language for source code. Specifically, it

allows a developer to transform occurrences of one defined structure into another us-

ing two separate grammars. These two grammars are based on formal tree-rewriting

principles, and the concept fits well into the design process allowing for rapid pro-

totyping using formal design notations. While the search for and transformation of

code is similar to the goals of this paper, TXL’s execution is designed for a different

purpose. TXL focuses heavily on formal design principles, whereas RSC completion

occurs at a finer granularity than the formal design process. Developers do not al-

ways follow stringent design principles during software development, and it would

therefore be burdensome to use TXL to address small-scale problems, such as RSCs.

Each of these exact search techniques are designed to locate specific structural

patterns. Unfortunately, when faced with an RSC, there may exist variation between

target locations. At the time of query formation, we do not know the limit to the

variation present within the codebase. The user becomes burdened to describe—in

precise terms—the structure of a problem that could be expressed in any number of

ways [Holmes et al., 2006].

An exact query attempting to capture all possible variations must determine

functional equivalence, an undecidable problem [Turing, 1936]. We use the notion of

similarity to overcome this issue. Though such approximation potentially introduces

false and missed positives, less well-defined structures can still be discovered.

78

6.5 Approximate Search Approaches

The concept of extracting facts and relationships from source code to maintain a

query-able approximation is not unique to our technique.

Holmes and Murphy [2005] promote Strathcona, an example recommendation

tool that can be used when inadequate documentation is available for a specific

framework feature. Like the technique described in this paper, Strathcona auto-

matically forms queries based on developer-provided code and returns results that

it deems relevant to the developer’s examples. Unlike our technique, Strathcona is

intended as a replacement for poor documentation, locating other segments of source

code that can assist the developer in using various framework objects and methods.

In particular, Strathcona’s perception of the codebase is at a much larger granular-

ity than appropriate for RSC target location, focusing on inter-method relationships

while ignoring the smaller-scale details. Additionally, since Strathcona is primarily

designed to work with static frameworks, it requires pre-processing every time the

code of that framework has changed. Lastly, while Strathcona will have succeeded

if a single good example is returned, a utility to discover RSC targets must return

all relevant locations.

Suade [Warr and Robillard, 2007] recommends locations relevant to a task based

on a developer-provided context of fields and methods. The developer manually

specifies the names of fields and methods of interest, and Suade returns locations

that are either called, called by, or accessed by that context. Like Strathcona, Suade

relies on a pre-generated database of program information and is intended to assist

in source code understanding, succeeding if a few good locations are returned. We

79

are interested in much finer-grained similarities than these techniques, where control

flow and dataflow is as important a consideration as the structure of the code.

6.6 Correlating Changes

Techniques to discover corresponding entities between two or more versions of a

software system [Horwitz, 1990; Laski and Szemer, 1992; Apiwattanapong et al.,

2004] share a common necessity with our technique. To calculate a similarity metric,

we must infer correspondence between the “before” and “after” picture. As changes

are made to a software system, it becomes increasingly difficult to correlate changed

sections with their original incarnations [Berzins, 1986].

Kim et al. [2007] propose a way to match code segments between software versions

using a grammar of atomic change rules, incuding the replacement or deletion of

packages, classes, procedures, and arguments. Change distilling [Fluri et al., 2007]

attempts to extract changes based on tree differencing. Both techniques use a similar

iterative matching technique to Reverb’s once sufficiently atomic change definitions

have been decided; however, the larger abstract concepts required by Reverb, such

as dataflow and control flow presence, cannot be defined as succinctly. We overcome

this by suggesting either an approximate, or limited recursive approach to matching

relationships (see 3).

History mining applications like ROSE [Zimmermann et al., 2005] and Hipikat

[Čubranić and Murphy, 2003] use meta information extracted from versioning repos-

itories to facilitate correlation. This information is not necessarily available to de-

velopers faced with an RSC.

80

6.7 Programming by Example

Programming by example (PBE) [Cypher et al., 1993] is a means to automate

common, repetitive actions through demonstration rather than explicit instruction.

While this field of work is primarily geared toward user interface improvement, it

shares a common goal of trying to repeat a given action by means of example. Unlike

our technique, previous approaches to PBE are based on pattern analysis of user ac-

tions, and does not operate on the semantic spaces required for a structural analysis

of source code. Still, Reverb’s implicit query extraction could be viewed as a novel

PBE approach.

6.8 Other Related Work

While the representation of our extracted factbase is relatively informal, there exists

work to formalize facts extracted from software to facilitate exchange [Lin and Holt,

2004]. Such formalizations could be beneficial for future iterations of our work, but

are unnecessarily detailed for an initial prototype analysis.

Richter [2004] has provided formal foundations to justify context-specific notions

of similarity; however, these formalizations do not permit the developer to be the

arbiter of what constitutes similarity for a given task.

6.9 Summary

There exists much related work that attempts to support the developer in navigating

or discovering code locations relevant to certain tasks.

81

Clone detectors search for exact or near-exact code segments for the purposes

of reducing redundancies and potential maintenance problems. While some RSCs

could loosely be considered clones, the scale, variation, and provenance of RSCs make

them ill-fitted for the classic definition of code clones. Plagiarism detection loosens

the definition of clones by searching for code that has been copied and deliberately

camouflaged; however, these techniques purposefully avoid emphasis on semantic

similarities beneficial to RSC detection, since non-plagiarized code would also bear

such similarities.

Refactoring involves the meaning-preserving transformation of code segments for

the purposes of improved understanding or evolvability. While some RSCs may be

considered refactorings, we wish to address a wider range of changes, even those

that are not necessarily meaning-preserving. More importantly, the strict notion of

correctness applied to refactoring techniques makes them unsuitable for discovering

some RSC targets, in which precise semantic information may not be available.

Exact query techniques search for specific patterns in source code based on the

well-defined requirements of the query author. A developer attempting to discover

RSC target locations may not have the information required to make such an explicit

query, as RSCs contain variations of unknown extent. Approximate query techniques,

like our approach, use a notion of similarity to discover relevant source locations,

however most such techniques are focused on high-level details and focus on returning

only a few good matches.

Chapter 7

Conclusion

Repeating a small change throughout a software system is often necessary; however,

finding each location where a change should be applied can be difficult. A developer

cannot always rely on the existence of lexical or syntactic patterns to make use of

traditional search techniques.

We have presented a heuristic search technique that uses observations of the

developer’s changes to find likely repetitive small-scale change locations. These ob-

servations occur in the background and are used to infer semantic information about

the change at hand. This information is then used to query other methods in the

developer’s project with the intent to discover locations where a similar change ought

to be made.

The thesis of this dissertation is that a semi-automated heuristic search discovers

target locations for repetitive small-scale changes with better precision and recall

than traditional techniques, and with a greater tolerance to variation. In support

of this, we have conducted an evaluation of our prototype implementation against

three RSC tasks in two open source software systems.

In the first study, we attempted to update Apache Struts 1.1 to consistently use a

logging framework in place of guarded debug statements. Struts inconsistently used

a combination of such statements, along with a proper logging framework, but the

quantity and extent were unknown. By performing an example change and invoking

Reverb, we were able to find all of the relevant RSC target locations without viewing

82

83

any false positives. None of the traditional techniques evaluated (lexical search,

syntactic search, and clone detection) met the 100% precision and recall of Reverb.

In our second study, we attempted to migrate JHotDraw 5.4 to use the new

for-each loop introduced in Java 5. This task was split into two RSCs: migrating

index-based collection iterations, and migrating object-based collection iterations.

For both of these tasks, we found that Reverb resulted in better precision and recall

than lexical search, syntactic search, and clone detection techniques—which suffered

in the face of code variations; and manual query refinement improved the precision

of Reverb’s automated heuristic even more than the default query.

7.1 Future Work

A semi-automated heuristic search has demonstrated potential for supporting repet-

itive small-sclae changes and warrants further research and development. In partic-

ular, there are five topics of future work that could be addressed in the near-term:

Granularity of change analysis, improvement of query refinement, formalization of

factbase elements, improvement of query logic, and reduction the result set.

The technique presented in this thesis works at an intra-method granularity.

While this limitation helps define boundaries for observing a change, detecting RSCs

that span methods could expand the problem space addressed by our technique. We

have identified one such case, presented in Chapter 5, which involves the layout of

AWT components. While the change is still small-scale and potentially repetitive, it

cannot be addressed without tracking relationships between methods.

Query refinement is an important facet of our tool, as the definition of similarity

84

is inherently imprecise. While we provide a facility for manually refining queries,

simpler information may be gathered from the developer. Specifically, results can be

deemed to be “helpful” or “unhelpful” and the query can be adjusted by observing

differences that could have potentially warranted the designation.

While the fact, association, and relationship types used for our prototype im-

plementation performed well, an empirical analysis and formalization of fact types

required for our technique would improve the generality of our approach. While it

would have been premature to define an ideal set of factbase data for our initial

analysis, we now have a basis for such refinement.

The query and comparison logic used by our approach is based on simple AND

arithmetic. While this performs well for the cases evaluated, there are scenarios

where the absence of a particular fact, attribute, or association may be important in

correctly identifying RSC targets.

The result set of our technique consists of each method in a project, sorted by

their similarity metric. Further analyzing the result set of our technique could help

specify a threshold to eliminate the number of false positives returned, and define a

point at which the developer can confidently stop browsing.

There are other, more long-term goals of our approach that warrants additional

research. While this thesis focused on locating repetitive small-scale change target

locations, we envision a tool that could actively suggest changes at each location.

Such technology would assist software developers in completing particularly repeti-

tive and error-prone tasks; identifying the locations where these tasks are required

is a positive start.

Bibliography

Apiwattanapong, T., A. Orso, and M. J. Harrold (2004). A differencing algorithm for

object-oriented programs. In ASE ’04: Proceedings of the 19th IEEE international

conference on Automated software engineering, Washington, DC, USA, pp. 2–13.

IEEE Computer Society.

Baeza-Yates, R. A. and G. H. Gonnet (1989). A new approach to text searching. In

SIGIR ’89: Proceedings of the 12th annual international ACM SIGIR conference

on Research and development in information retrieval, New York, NY, USA, pp.

168–175. ACM Press.

Baker, B. S. (1992). A Program for Identifying Duplicated Code. Computing Science

and Statistics 24, 49–57.

Baker, B. S. (1995). On finding duplication and near-duplication in large software

systems. In WCRE ’95: Proceedings of the Second Working Conference on Reverse

Engineering, Washington, DC, USA, pp. 86. IEEE Computer Society.

Balazinska, M., E. Merlo, M. Dagenais, B. Lague, and K. Kontogiannis (1999).

Measuring clone based reengineering opportunities. In METRICS ’99: Proceedings

of the 6th International Symposium on Software Metrics, Washington, DC, USA,

pp. 292. IEEE Computer Society.

Baxter, I. D., A. Yahin, L. Moura, M. Sant’Anna, and L. Bier (1998). Clone detection

using abstract syntax trees. In ICSM ’98: Proceedings of the International Confer-

85

86

ence on Software Maintenance, Washington, DC, USA, pp. 368. IEEE Computer

Society.

Belady, L. A. and M. M. Lehman (1976). A model of large program development.

IBM Systems Journal 15 (3), 225–252.

Berzins, V. (1986). On merging software extensions. Acta Informatica 23 (6), 607–

619.

Beyer, D. (2006). Relational programming with crocopat. In ICSE ’06: Proceeding of

the 28th international conference on Software engineering, New York, NY, USA,

pp. 807–810. ACM Press.

Brzozowski, J. A. (1964). Derivatives of regular expressions. Journal of the

ACM 11 (4), 481–494.

Clarke, C. L. A. and G. V. Cormack (1997). On the use of regular expressions

for searching text. ACM Transactions on Programming Language Systems 19 (3),

413–426.

Cordy, J. R. (2006). The txl source transformation language. Science of Computer

Programming 61 (3), 190–210.

Crochemore, M. and D. Perrin (1988). Pattern matching in strings. In V. Cantoni,

V. Di Gesu, and S. Levialdi (Eds.), Proceedings 4th Conference on Image Analysis

and Processing, pp. 67–79. Plenum Press.

Cypher, A., D. C. Halbert, D. Kurlander, H. Lieberman, D. Maulsby, B. A. My-

87

ers, and A. Turransky (1993). Watch what I do: programming by demonstration.

Cambridge, MA, USA: MIT Press.

Duala-Ekoko, E. and M. P. Robillard (2007). Tracking code clones in evolving soft-

ware. In ICSE ’07: Proceedings of the 29th International Conference on Software

Engineering, Washington, DC, USA, pp. 158–167. IEEE Computer Society.

Fluri, B., M. Würsch, M. Pinzger, and H. C. Gall (2007, July). Change distilling—

tree differencing for fine-grained source code change extraction. IEEE Transactions

on Software Engineering PrePrint, accepted for publication (to appear)(-), 17.

Fowler, M. (2002). Refactoring: Improving the design of existing code. In Proceed-

ings of the Second XP Universe and First Agile Universe Conference on Extreme

Programming and Agile Methods - XP/Agile Universe 2002, London, UK, pp. 256.

Springer-Verlag.

Gamma, E., R. Helm, R. E. Johnson, and J. M. Vlissides (1993). Design patterns:

Abstraction and reuse of object-oriented design. In ECOOP ’93: Proceedings of

the 7th European Conference on Object-Oriented Programming, London, UK, pp.

406–431. Springer-Verlag.

Geiger, R., B. Fluri, H. C. Gall, and M. Pinzger (2006, March). Relation of code

clones and change couplings. In Proceedings of the 9th International Conference of

Funtamental Approaches to Software Engineering (FASE), Number 3922 in Lec-

ture Notes in Computer Science, Vienna, Austria, pp. 411–425. Springer.

Gosling, J., B. Joy, G. Steele, and G. Bracha (2005). The Java Language Specifica-

tion, Third Edition. The Java Series. Boston, Mass.: Addison-Wesley.

88

Griswold, W. G. and D. Notkin (1993). Automated assistance for program restruc-

turing. ACM Transactions on Software Engineering Methodology 2 (3), 228–269.

Gusfield, D. (1997). Algorithms on strings, trees, and sequences: computer science

and computational biology. New York, NY, USA: Cambridge University Press.

Holmes, R. and G. C. Murphy (2005). Using structural context to recommend source

code examples. In ICSE ’05: Proceedings of the 27th international conference on

Software engineering, New York, NY, USA, pp. 117–125. ACM Press.

Holmes, R., R. J. Walker, and G. C. Murphy (2006). Approximate structural context

matching: An approach to recommend relevant examples. IEEE Transactions on

Software Engineering 32 (12), 952–970.

Holt, R. C. (1999). Software architecture abstraction and aggregation as algebraic

manipulations. In CASCON ’99: Proceedings of the 1999 conference of the Centre

for Advanced Studies on Collaborative research, pp. 5. IBM Press.

Horwitz, S. (1990). Identifying the semantic and textual differences between two

versions of a program. In PLDI ’90: Proceedings of the ACM SIGPLAN 1990

conference on Programming language design and implementation, New York, NY,

USA, pp. 234–245. ACM Press.

Houghton Mifflin Company (2004). The American Heritage Dictionary of the English

Language, Forth Edition. Houghton Mifflin Company.

Jankowitz, H. T. (1988). Detecting plagiarism in student pascal programs. The

Computer Journal 31 (1), 1–8.

89

Janzen, D. and K. D. Volder (2003). Navigating and querying code without getting

lost. In AOSD ’03: Proceedings of the 2nd international conference on Aspect-

oriented software development, New York, NY, USA, pp. 178–187. ACM Press.

Jiang, L., G. Misherghi, Z. Su, and S. Glondu (2007). Deckard: Scalable and ac-

curate tree-based detection of code clones. In ICSE ’07: Proceedings of the 29th

International Conference on Software Engineering, Washington, DC, USA, pp.

96–105. IEEE Computer Society.

Johnson, J. H. (1994). Substring matching for clone detection and change tracking. In

ICSM ’94: Proceedings of the International Conference on Software Maintenance,

Washington, DC, USA, pp. 120–126. IEEE Computer Society.

Kamiya, T., S. Kusumoto, and K. Inoue (2002). Ccfinder: a multilinguistic token-

based code clone detection system for large scale source code. IEEE Transactions

on Software Engineering 28 (7), 654–670.

Kapser, C. and M. Godfrey (2003). Toward a taxonomy of clones in source code: A

case study.

Kim, M., D. Notkin, and D. Grossman (2007). Automatic inference of structural

changes for matching across program versions. In ICSE ’07: Proceedings of the

29th International Conference on Software Engineering, Washington, DC, USA,

pp. 333–343. IEEE Computer Society.

Kim, S., K. Pan, and J. E. James Whitehead (2005). When functions change their

names: Automatic detection of origin relationships. In WCRE ’05: Proceedings

90

of the 12th Working Conference on Reverse Engineering, Washington, DC, USA,

pp. 143–152. IEEE Computer Society.

Kontogiannis, K., R. de Mori, E. Merlo, M. Galler, and M. Bernstein (1996). Pat-

tern matching for clone and concept detection. Automated Software Engineer-

ing 3 (1/2), 77–108.

Koschke, R. (2007). Survey of research on software clones. In R. Koschke, E. Merlo,

and A. Walenstein (Eds.), Duplication, Redundancy, and Similarity in Software,

Number 06301 in Dagstuhl Seminar Proceedings. Internationales Begegnungs- und

Forschungszentrum fuer Informatik (IBFI), Schloss Dagstuhl, Germany.

Lange, B. M. and T. G. Moher (1989). Some strategies of reuse in an object-oriented

programming environment. In CHI ’89: Proceedings of the SIGCHI conference

on Human factors in computing systems, New York, NY, USA, pp. 69–73. ACM

Press.

Laski, J. and W. Szemer (1992). Identification of program modifications and its ap-

plications in software maintenance. In Proceedings of the International Conference

on Software Maintenance 1992, pp. 282–290.

Lehman, M. M. and L. A. Belady (1985). Program evolution: processes of software

change. San Diego, CA, USA: Academic Press Professional, Inc.

Lehman, M. M. and F. N. Parr (1976). Program evolution and its impact on soft-

ware engineering. In ICSE ’76: Proceedings of the 2nd international conference

on Software engineering, Los Alamitos, CA, USA, pp. 350–357. IEEE Computer

Society Press.

91

Li, Z., S. Lu, S. Myagmar, and Y. Zhou (2006). Cp-miner: Finding copy-paste

and related bugs in large-scale software code. IEEE Transactions on Software

Engineering 32 (3), 176–192.

Lin, Y. and R. C. Holt (2004). Formalizing fact extraction. Electronic Notes in

Theoretical Computer Science 94, 93–102.

Malpohl, G., J. J. Hunt, and W. F. Tichy (2000). Renaming detection. In ASE

’00: Proceedings of the 15th IEEE international conference on Automated software

engineering, Washington, DC, USA, pp. 73. IEEE Computer Society.

Miller, R. C. and A. M. Marshall (2004). Cluster-based find and replace. In CHI ’04:

Proceedings of the SIGCHI conference on Human factors in computing systems,

New York, NY, USA, pp. 57–64. ACM Press.

Opdyke, W. F. (1992). Refactoring Object-Oriented Frameworks. Ph. D. thesis,

Urbana-Champaign, IL, USA.

Parnas, D. L. (1972). On the criteria to be used in decomposing systems into modules.

Communications of the ACM 15 (12), 1053–1058.

Prechelt, L., G. Malpohl, and M. Philippsen (2000). Jplag: Finding plagiarisms

among a set of programs.

Purushothaman, R. and D. E. Perry (2005). Toward understanding the rhetoric of

small source code changes. IEEE Transactions on Software Engineering 31 (6),

511–526.

92

Richter, M. M. (2004). Logic and approximation in knowledge based systems. In

W. Lenski (Ed.), Logic versus Approximation, Volume 3075 of Lecture Notes in

Computer Science, pp. 184–204. Springer.

Sager, T., A. Bernstein, M. Pinzger, and C. Kiefer (2006). Detecting similar java

classes using tree algorithms. In MSR ’06: Proceedings of the 2006 international

workshop on Mining software repositories, New York, NY, USA, pp. 65–71. ACM

Press.

Sullivan, K. J., W. G. Griswold, Y. Cai, and B. Hallen (2001). The structure and

value of modularity in software design. In ESEC/FSE-9: Proceedings of the 8th

European software engineering conference held jointly with 9th ACM SIGSOFT

international symposium on Foundations of software engineering, New York, NY,

USA, pp. 99–108. ACM Press.

Sun Microsystems (2004). Jdk 5.0 documentation.

Tokuda, L. and D. Batory (1999). Evolving object-oriented designs with refactorings.

In ASE ’99: Proceedings of the 14th IEEE international conference on Automated

software engineering, Washington, DC, USA, pp. 174. IEEE Computer Society.

Turing, A. M. (1936). On computable numbers, with an application to the Entschei-

dungsproblem. Proceedings of the London Mathematical Society 2 (42), 230–265.

Čubranić, D. and G. C. Murphy (2003). Hipikat: recommending pertinent soft-

ware development artifacts. In ICSE ’03: Proceedings of the 25th International

Conference on Software Engineering, Washington, DC, USA, pp. 408–418. IEEE

Computer Society.

93

Warr, F. W. and M. P. Robillard (2007). Suade: Topology-based searches for soft-

ware investigation. In ICSE ’07: Proceedings of the 29th International Conference

on Software Engineering, Washington, DC, USA, pp. 780–783. IEEE Computer

Society.

Yau, S., J. Collofello, and T. MacGregor (1993). Ripple effect analysis of software

maintenance. pp. 71–82.

Zimmermann, T., P. Weigerber, S. Diehl, and A. Zeller (2005, June). Mining version

histories to guide software changes. IEEE Transactions on Software Engineer-

ing 31 (6), 429–445.

Appendix A

Loop Migration Locations in JHotDraw

• org.jhotdraw.applet

– DrawApplet

∗ createColorChoice(FigureAttributeConstant)

∗ createFontChoice()

∗ createButtons(JPanel)

∗ setupAttributes()

– DrawApplication

∗ createColorMenu(String, FigureAttributeConstant)

∗ createFontMenu()

∗ createFontSizeMenu()

∗ createLookAndFeelMenu()

∗ checkCommandMenus()

∗ checkCommandMenu(CommandMenu)

∗ fireViewSelectionChangedEvent(DrawingView, DrawingView)

∗ fireViewCreatedEvent(DrawingView)

∗ fireViewDestroyingEvent(DrawingView)

• org.jhotdraw.contrib.dnd

– JHDDropTargetListener

∗ drop(DropTargetDropEvent)

– DNDFigures

∗ DNDFigures(FigureEnumeration, Point)

94

95

– DragGestureListener

∗ dragGestureRecognized(DragGestureEvent)

– JHDSourceListener

∗ dragDropEnd(DragSourceDropEvent)

– RemoveUndoActivity

∗ redo()

– RemoveUndoActivity

∗ release()

– AddUndoActivity

∗ undo()

– AddUndoActivity

∗ release()

– DragNDropTool

∗ createDragGestureListener()

• org.jhotdraw.contrib.html

– HTMLContentProducer

∗ getHTMLFontSizeEquivalent(int)

– ContentProducerRegistry

∗ getSuperClassContentProducer(Class, Class)

∗ write(StorableOutput)

– ETSLADisposalStrategy

∗ dispose()

– HTMLTextAreaFigure

96

∗ getPolygon()

• org.jhotdraw.contrib.zoom

– ZoomDrawingView

∗ centralize(Drawing d, Dimension bounds)

• org.jhotdraw.contrib

– CTXContextMenu

∗ enable(String name, boolean state)

∗ checkEnabled()

– CTXCommandMenu

∗ actionPerformed(ActionEvent e)

– CTXWindowMenu

∗ buildChildMenus()

– DesktopEventService

∗ removeComponent(DrawingView dv)

∗ getDrawingViews(Component[] comps)

∗ fireDrawingViewAddedEvent(DrawingView)

∗ fireDrawingViewRemovedEvent(DrawingView)

∗ fireDrawingViewSelectedEvent(DrawingView, DrawingView)

∗ Helper getDrawingView(Container container)

– MDIDesktopPane

∗ removeFromDesktop(DrawingView dv, int location)

∗ removeAllFromDesktop(int location)

∗ getAllFromDesktop(int location)

∗ cascadeFrames()

∗ tileFramesHorizontally()

97

∗ tileFramesVertically()

∗ arrangeFramesHorizontally()

∗ arrangeFramesVertically()

∗ resizeDesktop()

– SplitPaneDesktop

∗ removeFromDesktop(DrawingView dv, int location)

– TextAreaFigure

∗ drawText(Graphics g, Rectangle displayBox)

– TriangleFigure

∗ rotate(double)

– WindowMenu

∗ buildChildMenus()

– ClippingUpdateStrategy

∗ draw(Graphics, DrawingView)

– CustomToolbar

∗ activateTools()

– SimpleLayouter

∗ calculateLayout(Point, Point)

– StandardLayouter

∗ calculateLayout(Point, Point)

∗ layout(Point, Point)

– TextAreaToolUndoActivity

∗ undo()

∗ redo()

∗ setText(String)

98

• org.jhotdraw.figures

– LineConnection

∗ basicMoveBy(int, int)

– PolyLineFigure

∗ joinSegments(int, int)

∗ displayBox()

∗ basicMoveBy(int, int)

∗ write(StorableOutput)

– ConnectedTextTool.UndoActivity

∗ undo()

∗ redo()

– ConnectedTextTool.DeleteUndoActivity

∗ undo()

∗ redo()

– FigureAttributes

∗ write(StorableOutput)

– FontSizeHandle.UndoActivity

∗ swapFont()

– GroupCommand.UndoActivity

∗ undo()

– GroupFigure

∗ displayBox()

∗ setAttribute(String, Object)

∗ setAttribute(FigureAttributeConstant, Object)

– TextTool.UndoActivity

99

∗ setText(String)

– UngroupCommand

∗ isExecutableWithView()

– UngroupCommand.UndoActivity

∗ undo()

∗ ungroupFigures()

• org.jhotdraw.framework

– FigureAttributeConstant

∗ getConstant(String)

• org.jhotdraw.javadraw

– JavaDrawApp

∗ createImagesMenu()

• org.jhotdraw.standard

– CompositeFigure

∗ figures(Rectangle)

∗ addAll(FigureEnumeration)

∗ removeAll(FigureEnumeration)

∗ removeAll()

∗ orphanAll(FigureEnumeration)

∗ draw(Graphics, FigureEnumeration)

∗ findFigure(int, int)

∗ findFigure(Rectangle)

∗ findFigureWithout(int, int, Figure)

∗ findFigure(Rectangle, Figure)

100

∗ findFigureInside(int, int)

∗ findFigureInsideWithout(int, int, Figure)

∗ includes(Figure)

∗ basicMoveBy(int, int)

∗ release()

∗ write(StorableOutput)

∗ readObject(ObjectInputStream)

∗ init(Rectangle)

– QuadTree

∗ getAllWithin(Rectangle2D)

∗ addFigureEnumerationToList(List, FigureEnumeration)

– StandardDrawing

∗ figureInvalidated(FigureChangeEvent)

∗ fireDrawingTitleChanged()

∗ figureRequestUpdate(FigureChangeEvent)

∗ displayBox()

– StandardDrawingView

∗ fireSelectionChanged()

∗ drawPainters(Graphics, List)

∗ addAll(Collection)

∗ figureExists(Figure, FigureEnumeration)

∗ insertFigures(FigureEnumeration, int, int, boolean)

∗ getConnectionFigures(Figure)

∗ addToSelectionAll(FigureEnumeration)

∗ clearSelection()

∗ selectionHandles()

∗ findHandle(int, int)

∗ moveSelection(int, int)

∗ checkDamage()

101

∗ drawHandles(Graphics)

∗ getDrawingSize()

∗ getMinimumSize()

– ToolButton

∗ ToolButton(PaletteListener, String, String, Tool)

– AbstractCommand.EventDispatcher

∗ fireCommandExecutedEvent()

∗ fireCommandExecutableEvent()

∗ fireCommandNotExecutableEvent()

– AbstractFigure

∗ visit(FigureVisitor)

– AbstractTool.EventDispatcher

∗ fireToolUsableEvent()

∗ fireToolUnusableEvent()

∗ fireToolActivatedEvent()

∗ fireToolDeactivatedEvent()

∗ fireToolEnabledEvent()

∗ fireToolDisabledEvent()

– AlignCommand.UndoActivity

∗ undo()

∗ alignAffectedFigures(Alignment)

∗ setAffectedFigures(FigureEnumeration)

– BringToFrontCommand

∗ execute()

– ChangeAttributeCommand

∗ execute()

102

– ChangeAttributeCommand.UndoActivity

∗ undo()

∗ redo()

∗ setAffectedFigures(FigureEnumeration)

– ChangeConnectionHandle

∗ findConnectableFigure(int, int, Drawing)

– ConnectionHandle

∗ findConnectableFigure(int, int, Drawing)

– ConnectionTool

∗ findConnection(int, int, Drawing)

∗ findConnectableFigure(int, int, Drawing)

– ConnectionTool.UndoActivity

∗ undo()

– CutCommand

∗ execute()

– CutCommand.UndoActivity

∗ rememberSelectedFigures(FigureEnumeration)

∗ release()

– DeleteCommand

∗ execute()

– DragTracker

∗ mouseDrag(MouseEvent, int, int)

– DragTracker.UndoActivity

∗ moveAffectedFigures(Point, Point)

103

– FigureTransferCommand

∗ deleteFigures(FigureEnumeration)

– PasteCommand

∗ getBounds(FigureEnumeration)

– PasteCommand.UndoActivity

∗ undo()

– SelectAreaTracker

∗ selectGroup(boolean)

– SendToBackCommand

∗ execute()

– SendToBackCommand.UndoActivity

∗ undo()

∗ redo()

∗ setAffectedFigures(FigureEnumeration)

– StandardFigureSelection

∗ StandardFigureSelection(FigureEnumeration, int)

• org.jhotdraw.test.contrib

– CommandTextBoxMenuItemTest

∗ testSetGetCommand()

– CommandMenuItemText

∗ testSetGetCommand()

– GraphicalCompositeFigureTest

∗ testSetGetPresentationFigure()

∗ testSetGetLayouter()

104

– SimpleLayouterTest

∗ testSetGetLayoutable()

∗ testSetGetInsets()

– TextAreaFigureTest

∗ testSetGetText()

∗ testSetIsReadOnly()

∗ testSetIsSizeDirty()

∗ testSetGetFont()

∗ testSetIsFontDirty()

• org.jhotdraw.test.figures

– BorderDecoratorTest

∗ testSetGetBorderOffset()

– NumberTextFigureTest

∗ testSetGetValue()

– PolyLineFigureTest

∗ testSetGetStartDecoration()

∗ testSetGetEndDecoration()

– TextFigureTest

∗ testSetGetFont()

∗ testSetGetText()

• org.jhotdraw.test.standard

– NullDrawingViewTest

∗ testSetGetDisplayUpdate()

∗ testSetGetBackground()

105

– StandardDrawingText

∗ testSetGetTitle()

– StandardDrawingViewTest

∗ testSetGetDisplayUpdate()

∗ testSetGetConstrainer()

• org.jhotdraw.test.util.collections

– BoundsTest

∗ testSetGetCenter()

– IconKit

∗ loadRegisteredImages(Component component)

• org.jhotdraw.test.util.collections.jdk11

– SetWrapper

∗ SetWrapper(Set)

• org.jhotdraw.test.util

– ClipboardTest

∗ testSetGetContents()

– PaletteIconTest

∗ createInstance()

– StandardStorageFormatTest

∗ testSetGetFileExtension()

∗ testSetGetFileDescription()

∗ testSetGetFileFilter()

106

– StandardFormatManagerTest

∗ testSetGetDefaultStorageFormat()

– UndoableAdapterTest

∗ testSetIsUndoable()

∗ testSetIsRedoable()

∗ testSetGetAffectedFigures()

– UndoableToolTest

∗ testSetIsUsable()

∗ testSetIsEnabled()

– UndoRedoActivityTest

∗ testSetIsUndoable()

∗ testSetGetAffectedFigures()

• org.jhotdraw.util

– ColorMap

∗ color(String)

∗ colorIndex(Color)

– CommandMenu

∗ enable(String, boolean)

∗ checkEnabled()

∗ actionPerformed(ActionEvent)

– PaletteLayout

∗ minimumLayoutSize(Container)

∗ layoutContainer(Container)

– StandardVersionControlStrategy

∗ assertCompatibleVersion()

107

∗ handleIncompatibleVersions()

– StorableOutput

∗ writeString(String)

– StorageFormatManager

∗ registerFileFilters(JFileChooser)

∗ findStorageFormat(FileFilter)

∗ findStorageFormat(File)

– GraphLayout

∗ relax()

∗ remove()

– JDOSStorageFormat

∗ retrieveAll(PersistenceManager, Figure)

– JDOSStorageFormat.DrawingListModel

∗ DrawingListModel(Iterator)

– UndoableAdapter

∗ rememberFigures(FigureEnumeration)

∗ release()

– UndoManager

∗ clearUndos(DrawingView checkDV)

∗ clearRedos(DrawingView checkDV)

– VersionManagement

∗ readVersionFromFile(String, String)

• org.jhotdraw.samples.javadraw

– BouncingDrawing

108

∗ animationStep()

• org.jhotdraw.samples.net

– NodeFigure

∗ drawConnectors(Graphics)

∗ findConnector(int, int)

• org.jhotdraw.samples.offsetConnectors

– NodeFigure

∗ drawConnectors(Graphics g)

∗ findConnector(int, int)

• org.jhotdraw.samples.pert

– PertFigure

∗ start()

∗ layout()

∗ needsLayout()

∗ notifyPostTasks()

∗ hasCycle(Figure)

∗ writeTasks(StorableOutput, List)

